Categories
Electronic Components

Semiconductor industry and UK Government

The government has responded to a report released late last year on the UK semiconductor industry.

The report, released by the Business, Energy and Industrial Strategy (BEIS) Committee, details recommendations on how the UK semiconductor industry needs to improve to keep up with global development. It also emphasises the urgency to publish the UK’s long-awaited semiconductor strategy.

The Department of Digital, Culture, Media & Sport (DCMS) released the response to the report in early February. It is the latest in a chain of government responses to increased calls for government support for the semiconductor industry.

The response

Some of the main points covered in the response included:

·         The UK is currently working with international allies to guarantee and safeguard the security of the UK chip supply

·         It is important to protect the UK semiconductor industry from external national security threats

·         Cooperation and communication between the industry and the government should be established and maintained

·         The UK should not try and be self-sufficient, but should focus on its strengths and form partnerships to complete the supply chain

Among other topics discussed in the response is the recent purchase of Newport Wafer Fab by Nexperia. Due to certain concerns, Nexperia has been asked by the BEIS to sell 86% or more of the fab. The DCMS declined to comment any further on the matter because of future potential judicial review proceedings.

On a final note the DCMS said it would work closely with all government departments, the BEIS and the Department for International Trade to make the publication and execution of the UK’s semiconductor strategy successful for the industry. The response did not, however, give a timeline for when to expect the long-anticipated strategy.

A quick recap

The UK semiconductor strategy has been in the works for around two years at this point. It is yet to be released. Apparently, it was due to be published in November 2022, but there is still no sign of it.

Many tech-oriented organisations, committees and unions are calling for more urgency on the part of the government. Even before the strategy was announced, people were petitioning for more funding and priority on the UK’s chip industry.

Days after the government response was published, the BEIS, who submitted the original report, was disbanded by the Prime Minister. It has been replaced with the Department of Energy Security and Net Zero

There is still much anticipation for the coming semiconductor industry strategy and the changes it may bring.

Global presence

 

Cyclops’s office is based in the UK, but we have a global network of offices and partners here for you. No matter what component you’re looking for, we can help. Contact Cyclops today on +44 (0) 1904 415 415, or email us at sales@cyclops-electronics.com

Categories
Electronic Components Future Semiconductor

Using AI to design microchips

Artificial intelligence (AI) is on everyone’s mind right now. With the rise of ChatGPT  and other AI software expanding our potential, every industry is wondering how AI can help them. The electronics industry will not miss out.

The market

One company providing industry insights, Deloitte Global, predicted this year semiconductor companies will spend around $300 million on AI tools.

Granted, in the grand scheme of things $300 million is not a huge amount compared to the entire market, worth $660 billion. However, the return on investment is huge and can’t be ignored.

But staff should not fear, these tools are used to help, not replace, engineers. Chip design tools have been created by companies specialising in Electronic Design Automation (EDA). The tools are usually to help engineers design and simulate chips, without the need to physically manufacture them.

The price of the future?

These AI tools aren’t for everyone – a single license could be very pricey, and well above what smaller companies could afford. This would be a small price to pay for those who can afford it though, since the resulting designs could be worth billions.

It is also possible for companies to create their own AI tools in-house instead of buying from an EDA company. This, however, would need the company to have AI expertise already.

The great thing about working alongside AI is it greatly improves efficiency and size of semiconductors. AI tools can design chips under the 10nm process node to make them even smaller and more efficient.

Staff shortages

Another advantage of using AI currently is to bridge the employment and skill gap. Because of legislation like the US and EU Chips Act, there’s a need for many more highly-qualified and skilled people within the semiconductor industry. But filling those new jobs does not happen instantly, in fact it could take years to fully train people to fill those roles. In this case, using AI in the meantime makes perfect sense, giving current engineers room to breathe.

AI already has some sway in the industry. Approximately 30% of semiconductor device makers surveyed by McKinsey said they were already generating value through AI or ML. The other 70% are still only in the starting stages of implementing the technology.

A learning curve

Within the umbrella term of AI, there are technologies that are used including graph neural networks (GNNs) and reinforcement learning (RL). RL is the repetitive running of simulations and finding a positive result through trial and error. AI can run these simulations at such a high speed, and without the use of a physical version of the electronic components.

GNNs, on the other hand, are advanced in other ways. This machine learning algorithm analyses graphs made up of nodes and edges, extracting information and making predictions. Because the structure of a chip share a similar structure to these graphs, GNNs can be used to analyse and optimise chip structure.

I Robot

One thing you don’t need artificial intelligence for is knowing that Cyclops is your best choice. When you’re looking for electronic components, whether obsolete or everyday, call Cyclops for the best prices and delivery time for your components. Get in touch today at sales@cyclops-electronics.com, or call us on +44 (0) 1904 415 415.

Categories
Component Shortage COVID-19 Electronic Components Supply Chain

Chinese New Year shipping delays

The earlier-than-usual Lunar New Year celebrations may cause more disruption than normal, according to shipping experts.

Lunar New Year took place between January 22nd and February 5th 2023. The festival is well-known for causing shipping delays and supply chain disruption. The effect this year, however, may be exacerbated.

Not only have factories been affected since early January, but there has also been several Covid outbreaks causing factory lockdowns.

Planning ahead

Normally staff begin taking leave a couple of weeks before so they can travel home. This means even late December saw a chaotic rush of exports and manufacturing. According to a survey of supply chain professionals, almost three quarters (73.5%) thought the festivities would cause delays.

The survey, conducted by Container xChange with 2,300 respondents, with 55% saying they had planned ahead for New Year.

The factory closures are predicted to continue for some time, well beyond the end of celebrations in China.

The previous decrease in demand meant there had been several blank sailings from Asia. This is when an ocean freight operator cancels or alters routes.

However, the combination of New Year, Covid and the already disrupted supply chain could limit shipments able to leave China.

A different climate

Compared to previous years there is a lot of inventory currently. This leads to a whole array of other issues, including port congestion and capacity management. Usually there is a small surge pre-empting New Year, which hasn’t really occurred this time around.

Freight rates are the lowest they have been since 2019, and
prices to the East Coast are 83% lower than last year.

Many supply chain professionals are concerned there will be a second wave of shutdowns after New Year. Since so many people are gathering and meeting, there could be enough infections to once again halt production.

Further down the line this would add to the workforce shortages affecting the already congested ports.

Much of the stock is sitting in the port for a prolonged time, and while plenty of containers are available, there are fewer transport trucks. 

Don’t worry…

When it comes to electronic components, Cyclops Electronics is an efficient and reliable provider. We have more than 30 years’ experience in this industry, and we’re sure we can provide what you need. Get in touch today at sales@cyclops-electronics.com, or call us on +44 (0) 1904 415 415.

Categories
Electronic Components Semiconductor Supply Chain

Top car brands affected by semiconductor shortages

The semiconductor shortages have had a significant impact across a lot of industries. One hit the hardest has been the new vehicle market. Here are a few of the companies that have been the worst-affected:

Jaguar Land Rover

Certain models have been almost discontinued by the brand, which apparently is to catch up with demand for other models. Waiting lists for popular Range Rovers are over a year long, with sales suspended in some markets. There will be some production decreased so more resources can be used for popular models.

Toyota

The company was forced to cut its annual output target since production was lower than expected in the second half of the year. Currently demand is still higher than supply, so factories have been forced to shut on certain days. Supplies of Corolla, RAV4, and Yaris are supposedly the most affected.

Ford

Similarly to Toyota, Ford was forced to cut production at several factories, and things haven’t improved much since. Ford’s CFO said he didn’t think any “significant relief” was coming. Ford’s CEO said both semiconductors and EV battery materials were in high demand, and would be for the next decade.

Volvo

In late 2022 Volvo announced the temporary closure of one of its factories. The company’s biggest shareholder has also been affected by shortages, with its profits allegedly falling by 55% in the first half of 2022.

Honda

Honda’s profits were mostly due to the weakening value of the yen, making its results seem more positive. These skewed results were mostly due to the chip shortage, with 3.8 million vehicles predicted to be cancelled in 2022. This is, however, a huge improvement on the 11.3 million cancelled in 2021.

The executive vice president of Honda said he doesn’t believe the worst of the shortages has passed. The American production of CR-V and Civic models were severely affected.

Stellantis

The amalgamation of Jeep, Dodge, Alfa Romeo and Fiat has been dealing with shortages since its inception. The company is currently overhauling the entire line-up to work towards a majority of low-emission vehicles.

Thanks to this, Stellantis is in need of more semiconductors than ever. However, apparently profits rose in Q3 2022, with sales of battery electric vehicles rising by 40%. If this continues, things may slowly begin to improve for the company.

Volkswagen

The company have said they have around 150,000 unfinished cars in need of semiconductors. Because of ‘geopolitical developments’, namely tensions between China and the US, it believes shortages will continue for a year minimum.

Nissan

Nissan went from predicting the sale of 4 million units to 3.7 million in 2022. This, they said, was down to China lockdowns and general semiconductor shortages. Production issues have been relatively localised, with China production falling by 23.5%. This balanced the gain in output at Nissan’s other factories.

Nissan has been trying to use alternative chips and dual sourcing to bypass some of the current shortages. If this is successful, there may be a positive outlook for the company again shortly.

Mazda

Mazda was reportedly struggling so much in November 2022 that they couldn’t even predict output for the following two weeks.

Things have not gotten much better, with predictions that supply will be limited until the end of 2023. It also predicted the lowest-priced car trims will see the strongest growth thanks to the looming recession. However, Mazda expects a rise in profits this year thanks to the struggling value of the yen.

GM

The American company has allegedly 95,000 unfinished vehicles waiting for semiconductors. This is harming its storage and sales, and will continue since the unfinished vehicles are those in high demand.

Despite not meeting demand, GM is still predicting strong sales and fewer supply disruptions in 2023.

Overall

Many companies expect the shortages and supply chain issues to continue throughout 2023. Some are hopeful, however, that as supply eases, so too will the financial pressures they currently face.

A reliable source

In the past Cyclops Electronics has helped several car companies source electronic components they couldn’t find elsewhere. We have a huge stocklist and a professional sales team that can find what you need at the best price. Contact us today at sales@cyclops-electronics.com, or call us on +44 (0) 1904 415 415.

Disclaimer

The information in this article has come from various sources, including Slash Gear’s article, Car Companies That Were Impacted Most By The Semiconductor Shortage.

Categories
Electronic Components

EU Chips Act developed further

Following a vote on Tuesday 24th of January, the latest drafts of the EU Chips Act and the Chips Joint undertaking were adopted by The Industry and Energy Committee.

Proposals for the EU Chips Act were first published in February of 2022, and has since developed through committee discussions. The European Commission said the Act was developed in response to the industry chaos catalysed by the pandemic in 2020.

Now, after so long, the final vote is just around the corner.

There are three main elements to the Act:

The Chips for Europe Initiative is aimed at supporting capacity building and large-scale innovation. This is hoped to strengthen the EU as a player in the semiconductor manufacturing industry. It will increase funding for R&D, training and tech start-ups, among other things.

The Act also plans to secure the supply of semiconductors to the EU by way of investment. They also plan on increasing capacity in manufacturing, packaging and advanced testing. Alongside that, it hopes to enable the opening of integrated production facilities and open EU foundries.

Another purpose of the Act is to coordinate a crisis response between EU member states and monitor supply of semiconductors. If supply is watched, shortages and demand can be anticipated and trigger countermeasures.

Funding

The EU claims that the initiatives and funding within the Chips Act will aid it in its goal of doubling its global market share by 2030. Going from 10% market share to 20% is quite a leap, and the Act in total only mobilises €43 billion.

The European Commission said they hoped the Act’s funding would be boosted, or even ‘matched’  by private investment. This would immensely boost what the Act could be capable of, well beyond 2030.

Provisions

Article 11 of the Act details the concept of the new Open EU Foundries. These new ‘first-of-a-kind’ facilities will design and produce electronic components for other industry players. There will also be Integrated Production Facilities, which design and produce components for their own market. For these facilities to qualify for funding they have to fit certain criteria, including committing to innovation.

Something else the Act addresses is the training of industry staff. It has been a continuous challenge for the sector in Europe to attract highly-skilled persons to work in semiconductors. The Chips for Europe Initiative will support education, training and skilling, while also providing placements and apprenticeships.

The vote in plenary is due to take place in February. From there it would be the last step before European Commission, Parliament, and Council negotiations.

Why not act now?

Despite the electronics industry changing every day, Cyclops Electronics is a safe, reliable choice to source all your electronic components. We have a dedicated sales team and an extensive stocklist to make sure you get everything you want. Contact Cyclops today at sales@cyclops-electronics.com, or call us on +44 (0) 1904 415415.

Categories
Electronic Components Future Semiconductor

The future of semiconductor manufacturing, is it digital twins?

What is a digital twin?

The concept of digital twins has been around since the early 90s. Since then, it has been further developed and become a time and money saver for many manufacturers.

The purpose of a digital twin is to mimic a physical system exactly. It gives those using it the ability to simulate what they want to do, and the twin predicts the outcome.

These twins are not to be confused with a simple simulation or a digital thread. A simulation can only replicate the outcome of one process, while digital twins can run multiple simulations for different processes. A digital thread, although similar, is more a record of everything occurring in a product or system over time.

There are several varieties of digital twins, all with different use cases. The purposes range from basic, with component twins, to more complex process twins which can represent an entire production facility.

The timeline

Semiconductors can take around 3 months to manufacture from a silicon wafer to multilayer semiconductors. Not only that, but semiconductor fabs themselves take years, and millions in funding, to build. Because of this, it is hugely time-consuming to open any new facilities and start production there.

The issue that arises, then, is there would be time between demand increasing and when it can be met. Alongside this, any new facility will need trained staff and assurances any new equipment is working.

Digital twins give manufacturers the ability to test the workings of a facility before production begins. This may not seem like a big deal but it means that any mistakes or issues can be detected much earlier, and won’t affect the real production.

Even in a working fab, a digital twin can conceptualise new processes, without interrupting production. Finding working systems before changing the physical process can save time and money too.

And if you need skilled employees? No problem. By combining digital twins with training software or VR, you can train new staff before they touch the real equipment. Employees can then be qualified to work in a facility with no prior experience and no disruptions to production.

Sustainability

An alternative concept is using digital twins to become more environmentally friendly. Users can test ways to cut emissions and energy use to reach sustainable goals. Any problems or errors can be discovered before implementing them in real time. One study found that 57% of organisations agree digital twins are pivotal to improving sustainability.

Something to be mindful of is that it needs to be up-to-date to mirror the conditions of the physical version. This is especially important with system twins and process twins, where several interlocking systems work together.

Advantages

With the huge amounts of data that can be collected through a digital twin, products can be developed much further. Since digital twins offer so much insight into potential outcomes, it can boost a company’s research and development much faster.

Once a product has been developed, a digital twin can monitor the manufacturing process, overall increasing efficiency. Once a product reaches the end of its life a twin can help decide the best outcome for it too.

A safe prediction

Digital twins can simulate processes and products to help manufacturers make assured choices. For those looking for electronic components, Cyclops Electronics is the best choice. We have an extensive stocklist of day-to-day, obsolete and hard-to-find components, and a dedicated sales team to source every component you need. Contact Cyclops at sales@cyclops-electronics.com or call us on +44 (0) 1904 415 415.

 

Image Source: SumitAwinash

Categories
Electronic Components Uncategorized

The inner workings of a flexible screen

Flexible screens that the consumer can fold or roll were once a complex novelty. Now, they are becoming increasingly more commonplace.

More and more phones and electronic devices are offering flexible screens. Only recently were the newest Samsung Galaxy phones released with folding screens. Oppo, LG and other providers are also beginning to offer flexible screens for their devices.

The first phones with curved displays were produced in 2014 when plastic joined glass as a screen substrate option. The flexible plastic could be bent without breaking, and was much more durable than a thin fragile sheet of glass.

Any kind of screen needs to be durable, but the necessity is increased when flexibility and folding is considered. The other layers of the device have to be just as flexible and durable, which is a factor that has led to a much longer development time.

I don’t believe my eyes!

OLED is currently the display of choice on flexible screens, often being chosen over the LCD alternative. Unlike the backlit LCD screen, the pixels themselves are what emit light in OLED. Thanks to this OLED screens can be much thinner and lighter.

Aside from the cover layer, the glass or plastic layer we interact with, and the OLED, there are two other layers in a flexible touchscreen device:

The substrate layer, which is the bottom layer of the screen, supports the layers that follow. This is usually made of plastic or metal. The most common substrate used for flexible devices is polymide, which has a high mechanical strength and thermal stability. This is also usually used for the cover layer as well.

Powered pixels

The thin film transistor (TFT) layer is between the substrate and the OLED layer. It controls the power delivery to each pixel individually, allowing for high contrast rates and lower power consumption.

Within the TFT layer itself there are also several components that go into its construction. The first layer is glass, metals and polymers and is only microns thick.

Next, there is a gate electrode made of aluminium, gold or chromium. The gate electrode provides a signal to the TFT which begins the contact between the source and drain.

The third layer, an insulator, is used to stop electrical shorting in between the two layers. After that there is another electrode layer and is deposited over the semiconducting surfaces.

Welcome to the fold

As a specialist in day-to-day and obsolete electronic components, Cyclops Electronics can help you source the components you’re looking for. With an extensive stocklist and a dedicated team of account managers, we can guarantee to go above and beyond our competitors. Contact Cyclops today to see what we can do for you on sales@cyclops-electronics.com, or call +44 (0) 1904 415 415.

Categories
Electronic Components

Is it possible to make compostable PCBs?

Decades ago we wouldn’t have thought it possible to create printed circuit boards (PCBs). Now, in 2023, we’re discussing the possibility of biodegradable ones.

A research group from the Johannes Kepler University in Austria developed the biodegradable base for the PCBs. The mix consists of beech wood shavings, organise full-grain spelt flour, fine plaster (CaSO4) dust and beech wood-based inoculum.

After storing the mixture in a flat plastic box in a cupboard for a few weeks a tissue grew. The fungal fibres, called mycelium, formed a kind of soft white skin, similar to paper.

A layer of copper or gold is then vapour-deposited onto the mycelium ‘skin’. Then, a laser will cut away the metal where it’s not needed.

A ‘grow-your-own’ circuit

Storing something in a cupboard for a few weeks has significantly lower production costs than regular PCBs. It also bypasses the need for chemicals and minerals that are hazardous to the environment.

With the use of these, too, there is no need to create specialist manufacturing equipment, unlike with biopolymers. They are made from renewable raw materials like starch or milk protein, but have to use an industrial composting plant that operates at a high temperature.

These ‘skins’ can then be mounted with electronic components like a regular PCB.

The mycelium has a very strong structural integrity, while it remains thin and flexible. It has so far been able to withstand about 2,000 bending cycles, it only shows moderate resistance when folded, can insulate electrical currents and can sustain temperatures that reach 250⁰C.

Early days

So far the concept can only be used in simple electronic devices. A multi-layer circuit or more complex electronics are slightly further in the future. Even at this early development stage, though, a prototype has already been attached to a moisture sensor, a Bluetooth chip that sends the sensor signal to a laptop or smartphone, and a special battery.

In the future it is hoped that production of a smoother mycelial skin through a refined formula could increase the possibilities. It could lead to multi-layer PCBs with smaller components.

Once the circuit has been used, it can be unsoldered and put in the compost. The metal used I the conductor paths will be a biproduct left in the soil, but will be nano-particles in unharmful quantities.

Looking for a fun-guy?

Whether you’re ‘growing’ or manufacturing your PCBs, Cyclops has the electronic components for you. We specialise in obsolete, hard-to-find and day-to-day electronic components, and can source components from trusted sources globally. Contact us today to see what Cyclops can do for you on sales@cyclops-electronics.com, or call +44 (0) 1904 415 415.

 

Categories
Electronic Components Uncategorized

Improvements to smart materials in the works

A team of scientists and engineers has developed a new way of producing thin film perovskite semiconductors.

This ‘smart material’ can adapt depending on stimuli like light, magnetic fields or electric fields.

This could lead to the material being combined with other nano-scale materials to produce sensors, smart textiles and flexible electronics.

Thin films are usually made via epitaxy: atoms are placed on a substrate one layer at a time.

However, with this method the films stay attached to the host substrate and are less easily utilised. If it can be separated from the substrate it is much more useful.

The team, based at the University of Minnesota, has found a way to create a strontium titanate membrane without several of the usual freestanding membrane issues.

Making freestanding ‘smart’ oxide material membranes comes with certain challenges. Unlike 2D substances like graphene, smart oxide materials are bonded in 3 dimensions.

The method

One way to make them is using remote epitaxy. Graphene is used as an intermediary between the substrate and the membrane. This allows the thin film material to be peeled off the substrate. One issue with this is when using the technique with metal oxides the graphene becomes oxidised and ruins the sample.

A new technique pioneered by the University of Minnesota is hybrid molecular beam epitaxy. This stops the oxidation process by using titanium that is already bonded to oxygen. The team has also been able to introduce automatic stoichiometric control, which no one else has been able to do.

The hope is in future to combine these thin film membranes to create more advanced smart materials. There are certain products already using thin films like gallium-oxide. Other alternatives to thin film include carbon nanotubes, which can be used in layers of only 0.06nm thickness.

A ‘smart’ choice

Cyclops Electronics can provide a huge range of specialist, day-to-day, and hard to find electronic components. We work with our customers to make sure we find what they need and deliver in the quickest time possible.

Contact Cyclops for all your electronic component needs. Call us on +44 (0) 1904 415 415, or email us at sales@cyclops-electronics.com.

Categories
Component Shortage COVID-19 Electronic Components Electronica Supply Chain

Cyclops Electronics – Looking back on 2022

Cyclops Electronics has had a monumental year. With a hugely successful Electronica, an exciting business acquisition, and plenty of special team moments to remember. 2022 has made its mark in style.

 

Team wide fun and games

This year we have initiated a weekly delivery of fresh fruit for all of the office to enjoy. It has proved to be a big hit and a great boost of natural goodness into the working day. It’s the perfect antidote to our regular pizza days.

For Stress awareness month in April, we organised picnic lunches for everyone and raffled off a wellness hamper.

At Halloween we stirred up a right cauldron of treats, a quiz curated by a staff member, and a Mummy wrapping game to get everyone in the spooky spirit.

We also celebrated Valentine’s Day, Wimbledon, and most recently the World Cup with full office decoration and goodies on tap. To mark the festive period hot chocolate and mince pies are now a permanent fixture in our kitchen.

Christmas fundraising has been great fun, supporting ‘Save the Children’ with Christmas jumper day and producing a sizeable contribution to a worthy cause.

 

Halfin

In April the Cyclops Group officially announced the acquisition of Belgium-based company Halfin Electronics. Shared values of collaboration, family values and dedicated professionalism made it a natural fit for the Group.

Halfin has enabled Cyclops to add Belgium to its list of international offices, including USA, China, Canada, Italy and Portugal.

The business was established in 1946, and has since built a global clientele and a speciality in vacuum tubes and other niche electronic products. It has been a wonderful addition to the Cyclops family.

Electronica

Electronica was the event of the year for all of us here at Cyclops. A team of nine staff from a range of departments attended the event. Aside from meeting a plethora of new customers, we also caught up with a lot of returning customers. The event was very important to us, since there hasn’t been an in-person Electronica since 2018. We were eager to reconnect with clients and businesses.

Not only did the team make lasting connections with businesses there, but were able to bond as a team and successfully run a trade fair stand. We’re so proud of them for continuing a Cyclops tradition that has been in place for decades.

And finally… 

A few words from our Sales and Marketing Manager, Ros Shaw:

“2022, what a year it has been… looking back at heatwaves, weather extremes, component shortages, supply chain disruption, political turmoil, economic uncertainties and more shortages, it’s been another eventful one. But one constant remains and that is that the Cyclops Team have delivered, day in and day out.

It was a real highlight of our year to chat with many of our appreciative customers at Electronica in Munich. Sharing plans for the New Year, developing strategies for sourcing in 2023 and discussing upcoming projects has enabled us to prepare. And that’s what it’s always been about, preparing and equipping the business to best serve the needs of our customers. Now more than ever we strive to adapt, evolve and innovate to keep stride with this fast-paced world.

We look forward to ranking highly on your ‘most useful’ list this time next year. Thank you for including us in your team. Here’s to 2023 and all of its adventures.”

 

en_GBEnglish