Categories
Electronic Components

Supply chain adaptability

Connectivity within our supply chain is a positive thing. It has given us access to resources from all over the world, boosting production and sourcing. However, covid and other factors have highlighted the risk that comes with having a globally connected supply chain.

If covid was the only concern, though, the supply chain would have recovered by now. The general increase in supply and demand has also left the industry struggling to catch up.

If there is a disruption to one area of the supply chain, this is then passed down the line to customers. At every step of the supply chain, the delays are exacerbated and impacts the economy.

Connectivity and interdependence have always been essential in the electronics industry, whether it is relying on other countries for materials or working with international foundries on production.

Certain countries had, and some still have, covid-related restrictions in place to stop the potential spread. This means that plants in those countries have had difficulty keeping up with demand. As one of the biggest exporters of electronics is also in this position, some countries are choosing to transition away from working with them.

Some large companies have already made the decision to move their base of operations to mitigate this risk in the future. This has the potential to massively shift industry dynamics and encourage other businesses to make similar moves.

Funding is being allocated by some governments to facilitate nearshoring or reshoring of companies, which would bolster the supply chain. Many countries, including the US, UK and India, are increasing the budget and support of domestic chip production. There will be several ongoing effects from this, including an increase in skilled workers, R&D and more in-house production.

Although this would be beneficial there would still need to be materials sourced from countries including places in turmoil. Even relocating a percentage of the supply chain will not resolve these sourcing conundrums. However, it would reduce shipping times and customs charges for the finished product, especially if production is closer to customers.

As much as it would be beneficial to reshore or nearshore production, it comes with certain risks. The cost of labour varies largely depending on location, as does the number of skilled workers. Additionally, the delay or difficulties associated with moving production halfway around the world will also be numerous.

Many countries have put measures and funds in place to encourage moves, but financial aid will only reach so far.

More than a long-term static solution, the supply chain needs to be flexible and adaptable. Supply, demand, and the world in general is very volatile right now. As such, suppliers and manufacturers will have to alter their ways of working accordingly.

Cyclops has the rare advantage of being able to source electronic components from all over the world. This, combined with our keen eye and careful inspection processes, means we can find and supply the components you need.

Call today on +44 (0) 1904 415 415 to speak to a member of our sales team, or contact us at sales@cyclops-electronics.com

Disclaimer: This blog is meant purely for educational or informational purposes and is in no way instructional.

Categories
Electronic Components

Process nodes and transistor density

There are regular news articles published claiming that the smallest ever process node has been produced. We hear all the time about how small chips are becoming. But how can we measure this progress and does size really matter?

Moore’s Law

The concept of Moore’s Law, loosely, is that the number of transistors in a microchip increases as the size decreases. Originally, when Gordon Moore observed this in 1965, it was thought that the number of transistors would double every two years, but this rapid rate has definitely slowed.

Even so, there is still a constant increase in the number of transistors that can fit on an IC. In 1971, 6 years after the advent of Moore’s Law, there were around 2.3 thousand transistors on a single chip. This sounds like a lot, but we can now fit hundreds of millions onto one.

Nowadays, as it probably always was, it is a race between manufacturers to produce the smallest, most advanced chips. And with the advancement of manufacturing technology, the stakes are higher than ever.

Process nodes

The main method of measuring electronic component progress now is through process nodes. This is the term used for the equipment used for semiconductor wafer production. It describes the minimum repeatable half-pitch (half the distance between two identical features on a chip) of a device. It seems, though, that even this node measurement is no longer accurately used, according to some sources.

Some recent node announcements come from big players in the industry, including Intel, Samsung and TSMC. Taiwan’s largest semiconductor company, TSMC, recently announced that it would be converting its 3nm process node into 1.4nm. Critics, however, were not sure how possible this would be.

Samsung also recently revealed its plans to start manufacturing 2nm process chips in 2025. Additionally, Intel is planning on producing 1.8nm chips in late 2024. Part of the process of developing smaller process nodes is changing the technology involved in production.

What is the measure of a chip?

The method of measuring chips by process nodes is not entirely accurate and can be quite ambiguous. Some people have suggested chip density within the chip would be a better indicator of advancement.

While companies compete to develop the smallest process, some companies are fitting more chips onto bigger nodes. To put it in perspective, Intel’s 7nm process has 237 million per millimetre squared. In comparison, TSMC’s 5nm chip has only 171 million per millimetre squared.

So, although certain chips may have a smaller process node, it doesn’t necessarily reflect how advanced the chip actually is. Intel often uses density to describe its chips, because that is much more beneficial to them.

It’s a process

The question is, should all chips be measured this way instead of in process nodes? If process nodes aren’t accurate to their original definition, the measurements don’t indicate of the highest power chips out there. This might be confusing to consumers when choosing a manufacturer.

It will become increasingly difficult to measure in process nodes as chips get increasingly smaller. Many manufacturers are already making plans for when they begin to measure in Angstrom rather than nanometres. If the changeover from one measurement type to another was not confusing enough, if the measurement method is inaccurate, it may get very complicated.

Apparently, though, transistor count can be just as inaccurate because there is no standard way of counting them. The number of transistors on a single chip design can vary by 33-37% which is quite substantial.

The final node

Unfortunately, there’s no definitive answer on how to measure the advancement of chips anymore. Moore’s Law is far from dead, but is very much up to interpretation these days. Those purchasing or sourcing chips will have to have their wits about them.

For those sourcing chips, contact Cyclops. We can source day-to-day or hard to find components with ease, and can guarantee our customers the best price. Get in touch via sales@cyclops-electronics.com or call us on +44 (0) 1904 415 415.

Categories
Electronic Components

The benefits of flexible electronics

Flexible electronics is an area of study that has come on in leaps and bounds in recent years and is an area of interest for many electronics companies. Liquid metal circuits are being researched as a potential step-up for wearable tech and biomedical devices.

At present, there are certain elements that make the advancement of flexible electronics difficult. One of these elements is the conductive material inside. If a rigid material like copper is used in flexible circuitry, it may break.

Some researchers are looking into the use of conductive threads, like those made out of carbon nanotubes. Others are taking a different approach and developing liquid metal circuits.

Quicksilver

Liquid metal used for circuits has not been a popular concept for a long time, mostly due to the fame (or infamy) of mercury. Mercury is a liquid at room temperature, but is highly toxic and couldn’t be used in electronics for safety reasons. Gallium, however, is beginning to look like a viable alternative.

While Gallium has a slightly higher melting point than mercury, it is not toxic and can conduct heat and electricity. The metal forms an oxide layer in the open air and this was viewed as a disadvantage in the past. Now, though, it could be advantageous when creating flexible circuitry.

Soft robots

Flexible electronics could have a number of uses in everyday life, and one hoped use is for soft robotics. With soft robots food could be handled safely without the risk of cross-contamination. It also opens up a wealth of possibilities for deep-sea exploration and specimen collection.

In a different area, soft robotics could have biomedical uses. Wearable technology, drug delivery devices and artificial organs are all potential utilisations of stretchable, human-mimicking electronics.

Soft robotics are already being used for prosthetic limbs. In 2020 a prosthetic hand was created for amputees, with functioning fingers and a moving thumb. Although in the very early stages of development, the prototype could pave the way for life-changing robotics in the future.

Virtually real

Aside from the more medical or safety-focused applications, there could be more recreational uses too. The use of soft robotics in conjunction with VR could make for an even more immersive user experience.

Stretching or twisting a mesh of gallium wires by it will change the electrical current running through them. At the moment this is still being researched, but it could be used for VR in the future. If gallium mesh was used in gloves, it could detect the pressure applied and translate it into VR.

Whether it’s for recreational, medical or safety purposes, exploring the use of liquid metal circuits and researching their potential could be greatly beneficial to the electronics industry, and the industries that come after it.

Cyclops Electronics can provide a substantial range of electronic components, and we’re experts at sourcing hard-to-find components when others cannot. If you’re looking for components, whether they’re obsolete or day-to-day, choose Cyclops as your supplier. Contact us now on (+44) 01904 415 415, or send us an email at sales@cyclops-electronics.com.

This blog is purely for entertainment and informational purposes, it is in no way instructional.

Categories
Electronic Components Future

3D printing of electronic components

We talk a lot about the ways modern technology are a benefit to the electronics industry. There’s no better example of this than the ability to 3D print electronic components.

Print preview

The first 3D printer was invented in the 1980s, and used a technique called stereolithography (SLA). You might recognise the term from photolithography, a process used in the manufacturing of semiconductor wafers. Stereolithography is slightly different, it uses a laser to harden layers of photopolymer successively in a pre-defined shape. Photolithography is for etching patterns onto semiconductor wafers.

SLA is still the most commonly-used method of 3D printing. There are, however, other methods that have come into use, including digital light processing and liquid crystal display.

With the printing of components or circuits that can conduct electricity, special inks that contain conductive nanomaterials are required.

The process

First, a digital model of the desired component is required. This is referred to as a Computer Aided Design, or CAD model. Then a base layer of the material, usually thermoplastics, is formed using fused deposition modelling (FDM).

After this a trace is created, which is the little web of wiring you can see on a regular PCB. These traces need to be much thicker on a 3D-printed board because the nano-inks naturally carry more resistance than copper.

Once this is complete, the additional components of the board are added in layers until it is finished.

Why use 3D printing?

The process of retooling an entire factory setup versus uploading a different design to a single machine are vastly different. Retooling can be a costly and painstaking process, especially if you are manufacturing on a small scale or just prototyping.

The flexibility that comes with 3D printing is also an advantage. Where regular machinery may have limitations, 3D printing could have significantly fewer.

There would also be a reduction in the waste produced by the process. Most of the time, boards are manufactured and then the excess material is cut away. With 3D printing there would be remarkably less waste produced as it only prints what is needed.

3D printing of electronic components is currently used for small batches or for rapid prototyping, but in the future it could easily be used for more complex components and larger batches.

Just a reminder

Although Cyclops Electronics does not specialise in 3D printers, we do specialise in electronic components of all kinds, and can supply stock as and when you need it. Make Cyclops your electronic component supplier.

This blog is meant for informational purposes only and is in no way instructional.

Categories
Electronic Components

Price of semiconductor equipment increasing

The price of chip manufacturing is increasing. From skyrocketing raw material prices to continual high demand for semiconductors, it/ is an expensive business right now. Semiconductor manufacturing prices are also on the rise.

Global manufacturers are announcing price hikes to combat the expected rise in inflation, passing the cost onto the customer.

Is reshoring reassuring?

Aside from the supply chain issues and raw material shortages, the drive for reshoring will drive up the cost and demand of semiconductor manufacturing equipment.

In both the US and the UK, new legislation is in the works to provide funding for the electronics industry. It comes alongside a push to reduce reliance on semiconductors sourced from Asia, especially powerhouses like Taiwan and China.

The Chips Acts

In the west’s new legislation, funding and incentives are offered to domestic and international companies looking to build fabs. One such company was TSMC itself, which was rumoured last year to be opening a branch in Germany.

While these grants and investments will go some way to covering the cost of new semiconductor manufacturing equipment, it will only be part of the massive price manufacturers pay.

A new challenger

This may not be the only international development affecting the price increases of semiconductor equipment. New competitors are throwing their proverbial hat in the semiconductor manufacturing ring. One of the countries that is beginning to manufacture more is India.

As the US and Europe are already heavy-hitters in the industry, India will have to make hefty investments into manufacturing. Bulk-buying machinery and technology for facilities will mean more demand, and distributors putting on a bigger price tag. Taiwanese manufacturer Foxconn announced it would be setting up a fab in the country.

Other costs

The cost of making the semiconductor manufacturing equipment also comes into play. As companies are persuaded to move west, the cost of their manufacturing will increase. Many companies based in the east have access to cheaper labour but European and US labour costs will be higher.

Outside of Asia, in areas that are reshoring, there will also be the struggle of finding highly qualified employees. Since there was no need for skilled individuals when there were no fabs, there is a gap in the industry. It will take some time to catch up with industry standards of education.

Kit up

As the chip shortages continue, there’s no guarantee when the cost increase of semiconductor manufacturing equipment might slow down. As with all things, we’ll have to wait and see.

Categories
Electronic Components Future Technology

The future of memory

Memory is an essential electronic component. Not only can it store data, but it can also process vast amounts of code. As it is so vital, manufacturers are upgrading it and adding improvements constantly. This could improve the way our computers and gadgets run but could also help people’s memories in the future.

Next-gen memory announcements

This year Samsung announced new products during the Flash Memory Summit in August. One of the products announced was the new ‘Petabyte Storage’, able to store as much data on a single server. A petabyte of storage (equivalent to 1,024 terabytes) would let manufacturers increase their storage capacity without requiring more space.

The company also announce Memory-Semantic SSD, combining flash and DRAM to to supposedly improve performance twenty-fold. This technology may be perfect going forward, suiting the increasing number of AI and ML operations with faster processing of smaller data sets.

SSD demand is increasing and other companies are vying for a share of the market. Western Digital also announced a new 26TB hard drive 15TB server SSDs earlier this year. Its new SSDs have shingled magnetic recording (SMR), which allows for higher storage densities on the same number of platters.

Market Worth

In 2021 the next-gen memory market was valued at $4.37 billion, and is expected to reach $25.38 billion by 2030. This demand is partly driven by high bandwidth requirements, low power consumption and highly scalable memory devices.

The need for scalable memory comes from the continually rising use of AI and ML. Lower-spec memory devices are causing bottlenecks in the functioning of these devices. Data centres are needed to process more data than ever before, so scalability is key for this market.

Futuristic Products

One promising product for the future of memory technology is Vanadium Dioxide. VO₂ is usually an insulator, but when it is heated to 68⁰C its structure changes and acts like a metal.

When an electrical current is applied to the circuit the metal would heat to its transition point. When it is cooled it would transition back.

Upon further study it was discovered that, when heated multiple times, the material appeared to remember the previous transitions and could change state faster. In a way, the VO₂ had a memory of what had happened previously.

The exciting discovery could mean the future of memory is brighter than ever. VO₂ could be used in combination with silicon in computer memory and processing. Especially for fast operation and downscaling, this material is an interesting prospect.

Our memories

Today our regular blog post coincides with world Alzheimer’s day. Dementia is a collection of symptoms caused by different diseases, that can result in memory loss, confusion, and changes in behaviour. If you would like to learn more about dementia or Alzheimer’s, visit Dementia (who.int)

Categories
Electronic Components Future Supply Chain

India increasing chip manufacture

In recent years India has been increasing its share in the electronics industry, planning to become a hub in the future.

Currently India has a lot of dependence on imported chips, heavily relying on the Chinese supply chain. One of its goals is to be, in part, autonomous in its chip production. The supply chain issues brought about by covid and other global factors really highlighted this.

But it is not easy to just move production of something so complicated to another country. It would require massive amounts of funding to reshore production.

Make in India

In 2021 the Indian government announced funding equal to $10 billion to improve domestic production over the next 5 years. Several companies have put in bids for the funding, including Vedanta, IGSS Ventures, and India Semiconductor Manufacturing Corp.

The funding is part of the Government of India’s ‘Make in India’ plan, encouraging investment and innovation in the country. Prime Minister of India Narendra Modi announced the initiative in 2014, focusing on 25 sectors including semiconductors and automobiles.

Domestic reliance

One of India’s goals is to move away from reliance on imports, on which they currently spend $25 billion annually. Only 9% of India’s semiconductor needs are met domestically. If production is reshored in part, this would increase local jobs and income for the country.

As it stands, India currently has more of a focus on R&D but don’t have fabs for assembly and testing. The nearby Singapore and manufacturing powerhouse Taiwan provide most of its current stock.

A change in the air, and in shares?

The recent approval of the Chips Act in the US means there may be a shift in industry shares. At the moment America has a 12% share, but if production is re-shored this may impact the Asian market.

However, India and the US, alongside the UAE and Israel plan to form an alliance. With financial aid from the bigger players, the alliance plans to focus on infrastructure and technology.

India was the US’s 9th largest goods trading partner in 2021, with $92 billion in goods trade in 2019. India is also the EU’s 10th largest trading partner, but with domestic semiconductor industry growth this might change.

India’s end equipment market revenue was $119 billion at the end of 2021. Its annual growth rate is predicted to be 19% in the next 5 years.

India is aware of the importance of the semiconductor industry, and set up an India Semiconductor Mission (ISM) in 2021. Its goal is to create a reliable semiconductor supply chain, and to become a competitor against giants like the US.

Relish the competition

India’s potential in the semiconductor industry is increasing, and there is likely to be more investment in the future. It is difficult to tell how much further down the line it would be before India becomes a competitor, but the coming years are sure to be interesting.

Categories
Electronic Components Future Semiconductor Technology

The effect of AI on the electronics supply chain

AI and machine learning technology is improving all the time and, consequently, the electronics industry is taking more notice. Experts predict that the application of AI in the semiconductor industry is likely to accelerate in the coming years.

The industry will not only produce AI chips, but the chips themselves could be harnessed to improve the efficiency of the electronic component supply chain.

What’s included

In an AI chip there is a GPU, field-programmable gate arrays (FPGAs), and application-specific integrated circuits (ASICs) specialized for AI.

CPUs were a common component used for basic AI tasks, but as AI advances they are used less frequently. The power of an AI depends on the number and size of transistors it employs. The more, and smaller, the transistors, the more advanced the AI chip is.

AI chips need to do lots of calculations in parallel rather than sequentially, and the data they process is immense.

Think about it

It’s been proposed by some that designing AI chips and networks to perform like the human brain would be effective. If the chips acted similarly to synapses, only sending information when needed, instead of constantly working.

For this use, non-volatile memory on a chip would be a good option for AI. This type of memory can save data without power, so wouldn’t need it constantly supplied. If this was combined with processing logic it could make system on a chip processors achievable.

What is the cost?

Despite the designs being created for AI chips, production is a different challenge. The node size and costs required to produce these chips is often too high to be profitable. As structures get smaller, for example moving from the 65nm node to the latest 5nm, the costs skyrocket. Where 65nm R&D cost $28 million, 5nm costs $540 million. Similarly with fab construction for the same two nodes, price increased from $400 million to $5.4 billion.

Major companies have been making investments into the R&D of AI chip infrastructure. However, at every stage of the development and manufacturing process, huge amounts of capital are required.

As AI infrastructure is so unique depending on its intended use, often the manufacturers also need to be highly specialized. It means that the entire supply chain for a manufacturer not yet specialized will cost potentially millions to remodel.

Beauty is in the AI of the beholder

The use of AI in the electronics industry could revolutionize how we work, and maximize a company’s profits. It could aid companies in supply forecasts and optimizing inventory, scheduling deliveries and so much more.

In every step of the electronics supply chain there are time-consuming tasks that AI and machine learning could undertake. In the sales stage, AI could assist with customer segmentation and dynamic pricing, something invaluable in the current market. It could additionally prevent errors in the manufacturing process and advance the intelligence of ICs and semiconductors manufactured.

Artificial intelligence

We’re not quite at the stage where AI has permeated throughout the industry but it’s highly likely that it will in the coming years. That said, this blog post is all speculation and is in no way to inform decisions.

Cyclops can provide all types of electronic components, no matter what you’re building. See how we can help you by getting in touch today. Contact us at sales@cyclops-electronics.com, or use the rapid enquiry form on our website to get results fast.

Categories
COVID-19 Electronic Components Semiconductor Supply Chain Technology

Price hikes in the electronics industry

Chip prices will continue to increase, despite some component lead times improving. This is due to inflation, labour shortages, and scarcity of raw materials, among other things.

Intel was the latest company to announce price increases, which it will supposedly introduce at the end of this year. It joins firms including TSMC, Samsung, and Texas Instruments in raising the cost of its products.

As has become very clear, the pandemic contributed to supply shortages the world over. However, there have also been issues with labour shortages, material sourcing and the increasing costs of everything.

Reverse psychology?

Processors are increasing in price at Intel and other companies. It has been suggested that this actually may be due to oversupply. If the cost of the components is increased vendors are more likely to buy the stock before it occurs. As they stock up, Intel’s supply levels will decrease. This may lead to shortages in the long-term.

These increases are due to be introduced at the end of 2022, but people are suspicious it may happen sooner. If prices are instead increased in autumn, they can be discounted for events like Black Friday and Christmas.

War and price

Inflation is causing the price of materials to increase also, which inevitably would be passed down the supply chain. The price of raw materials was always going to increase over time, but the conflict in Ukraine has exacerbated this. Gases like neon, which is used in semiconductor production, is almost wholly (70%) sourced by Ukraine. Similarly, 40% of krypton gas is also from Ukraine, which is in conflict with Russia.

Aside from these materials, the price of lithium, cobalt and nickel, used for EV batteries, is also rising. The EV industry already had price hikes when the pandemic began, when the chip shortage took its toll. Now, following the 15% increase in 2021, automakers are facing another potential price increase.

Expansion

One of the largest players in the industry, TSMC, announced its price increases would take place in 2023. Despite not being as severe as first speculated, the 6% price increase will be enough that customers will notice.

Aside from the cost of raw materials, electricity and labour expenses, TSMC is also expanding. To fund this expansion it is increasing the price of fabrication.

Could we have stopped it?

Years before the pandemic, as far back as 2017, there were signs that a shortage was on its way. New technologies were mounting and other geopolitical difficulties were afoot. Even then, the best way to avoid this would have been to redesign the tech and improve the fabrication process. This would have been a time-consuming and expensive process, and whenever it happened it would result in delays and losses.

Conclusion

The amalgamation of all these factors will lead to lasting price increases for electronic components. Even if these prices are discounted in peak times like Black Friday or Christmas, suppliers will still have to deal with inflation and material shortages.

The expansion plans of some of the industry’s big players, and the cost of the tech to sustain them will also lead to price increases. How long the effects of these will last, we’ll have to wait and see.

Categories
Active Components Electronic Components Technology

Optoelectronics

Intro

Optoelectronic devices are products relating to the detection or creation of light. Chances are you deal with optoelectronics quite often, whether it’s in the form of LEDs in remote controls, solar panels, or fibre optic broadband.

Optoelectronic devices

A lot of markets utilise optoelectronics, namely military, consumer and industrial.

Laser radars, optical sonar systems, night vision equipment that uses infrared are all integral applications of optoelectronics for the military. There is also optoelectronics tech utilised for communication systems, both in military and consumer products.

Optoelectronics all work on the principle of the photovoltaic effect. This is when electrons are ejected from the material, creating electrical signals. This can also work the opposite way when components can use electricity to generate light.

It can only detect or emit certain waves of electromagnetic radiation, usually either visible light or near-infrared (NIR).

Advantages

The utilisation of optoelectronic components in the satellite industry has meant advancement in design. Satellite-to-satellite communication could one day happen with lasers. Solar cells also convert solar energy into electrical power, which could be the power source for large satellites one day.

Optoelectronics is already integral to the communications industry. Optical fibre communication systems is sometimes called one of the “greatest engineering achievements of the past century”. Need I say more? Well, I will. Optoelectronics was at the root of both high-quality voice communication and the internet. If that doesn’t prove how advantageous it is I, don’t know what will.

Disadvantages

Optoelectronics are temperature sensitive. As a result, at extreme temperatures components and circuits are at risk of damage. For applications including CMOS sensors, digital light processors and optical transceivers, a thermoelectric cooler has to be implemented.

Precise alignment is needed for coupling, too, as well as the difficulties that come with integrating optoelectronic devices on a substrate. All of these are potential deterrents from using the devices.

Market predictions

In 2020 the market was valued at $5.14 billion, increasing to $9.83 billion by 2026 at a 10.25% CAGR.

The surge is, in part, predicted due to the increase in electric vehicles (EVs) in production, which is forecast to continue. LED displays are now more common than ever, with even wearable tech featuring high-definition screens.

According to Market Insight Reports optoelectronics market expected to grow at a CAGR of 10.25% over the forecast period of 2019 to 2024.

As with many areas of electronics, the possibilities for advancement are endless. Especially in relation to satellites, the future may hold great things.

Cyclops has a vast stock of optoelectronic components, and can source any other components you need too! Too hear how Cyclops could help you, contact us on sales@cyclops-electronics.com, or call us on (+44) 01904 415 415.

en_GBEnglish