Categories
Technology

Cyclops in Numbers

We could tell you all of the reasons to choose Cyclops, but we’ve decided to show you instead. Take a look at some of the most important and exciting statistics from Cyclops Electronics.

We're here to help

Are you struggling with any components in particular? Or would you like to compare our prices with your other suppliers? Please get in touch and we’ll get back to you straight away.

Categories
Electronic Components

Counterfeit electronic component detection

How to benchmark your suppliers' counterfeit mitigation process

When you work in the electronic components industry, it is inevitable at some point you will come face-to-face with counterfeit electronic components. It is a veritable stone in the shoe of the electronic component industry, worth hundreds of billions of dollars. 

No matter where you are purchasing your parts from, having a good understanding of the steps and processes that your electronic components supplier follows for mitigating the risk of counterfeit parts is critical to protecting your supply chain and long-term reputation.  

With over 30 years of experience in the electronics industry, specialising in hard to find and obsolete components, at Cyclops Electronics we have a lot of knowledge when it comes to identifying and avoiding counterfeit electronic components. Our team of highly qualified inspectors have accumulated almost a century of experience between them, and we take pride in how vigilantly we deal with this supply chain havoc-wreaker. 

In this post we would like to share some of our know-how on how to detect counterfeit electronics and our testing and processes for electronic components counterfeit mitigation. It will arm you with the information you need to make informed, wise decisions about which brokers to work with and who works to the highest standards. 

What are counterfeit electronic components?

To make sure we are all on the same page, it is probably best that we define what a counterfeit electronic component is.  

A counterfeit, or ‘suspect’ electronic component is any component that is deliberately misrepresented in its production. Often counterfeit components are used to copy and profit off more high-quality, reliable electronic component manufacturers.  

There is a chance that the counterfeit components would work with the same function as their original counterpart. The issue arises when they do not have the longevity, or integrity, of the original. Buyers can end up spending a fortune on parts that will not work or will damage their circuitry, and there will be no one to hold to account. This is why it is so vital to have trusted brokers in your supply chain, so the risk to you is minimised.  

There are countries that are more infamous for the amount of counterfeit electronics produced there, but they can come from anywhere. Professionals at every stage of the supply chain have to be vigilant to mitigate the risk of counterfeit components to their customers.  

As long as there has been chip shortages, there has been a counterfeit industry, with new prolific methods accompanying each decade. In the 90s, among other things, it was counterfeit SRAM during the shortage. Then the 2000s began with counterfeit tantalum capacitors during the component’s allocation period.  

What do counterfeit electronic parts look like?

Most of the inspections undertaken within Cyclops Electronics facilities – or in vetted test houses we work with – are undertaken with highly specialised equipment.  

Here are some relatively common electronics counterfeit giveaways to look out for when you are inspecting electronic components: 

Evidence of packaging tampering

If you receive your components and the packaging looks damaged, this is the first sign to suspect they are counterfeit electronics. The packaging may look damaged beyond reasonable transportation wear and tear, or the tape may look tampered with.  

Key indicators of this include: 

  • Water damage 
  • Puncture marks 
  • Packaging does not match previous deliveries 

If this is the case, there is a chance that the electronic components have been tampered with or switched. It is worth notifying the vendor and the courier to make them aware of this issue, whether counterfeit is detected or not. 

A box with a DHL shipping label on it. The tape sealing the box reads 'repacked'
An industry example of goods that have been repackaged

Verify all included information

A white box with 'Vishay General Semiconductor written across it, however 'general' has been misspelled with an 'I' instead of an 'L'
An industry example of counterfeit packaging with spelling errors

All electronic components should come with packaging documentation and product datasheets are available online.  

Check the following information: 

  • Date code 
  • Part number 
  • Sealing date 
  • All other displayed information 
  • Packing date was after the date of manufacture.  
  • Spelling mistakes. Just like with spam emails, this is sometimes the easiest way to detect a counterfeit electronic component. 

The importance of the ‘golden sample’ 

In electronic component counterfeit detection, the ‘golden sample’ is an electronic component, reel or tray that has come directly from the manufacturer or from a franchised distributor. It is good practice to compare all, or at least any suspect incoming goods, to a golden sample. If there are discrepancies, it is a good indicator of potential counterfeit. 

Something unique and specialist that Cyclops can offer above its competitors is our cross-database checks. Thanks to our years of experience in the industry we have built a huge database of electronic component images. We can compare incoming goods to these industry standards where other providers don’t have the same resource.

Count and consistency

Usually when you buy electronic components they will be in trays, reels or cut tap. You may even get bags of components delivered to you. So, count them. There will often be partial factory quantity, so make sure you have the correct count ordered. 

More than just the outer packaging of the components, the quality of the inner packaging can be indicative too. If a reel is discoloured or warped, it can indicate damage or tampering, and the same applies to the orientation of parts on a tray or reel. Parts may have been removed and replaced if they are not all oriented in the same direction.  

Electronic counterfeit detection methods

A lot of the ways to detect counterfeit electronic components mentioned above are included under the banner of visual inspection. It is often the first line of defence when avoiding counterfeit electronic parts. There are more advanced, accurate tests that often need to be used to minimise the risk of counterfeit components 

Decapsulation and delidding

Decapsulation involves the corrosion of the top layer of a component to check the internal die wafer and wafer bonds. Cyclops uses an acid-free DPA System, instead of the traditional wet chemical process. This method is much cleaner than the wet chemical alternative, and means our staff are not at risk of inhaling any harmful chemicals. 

Decapping is commonly used for devices with plastic packaging. Once the package cavity is exposed the internal die wafer can be checked. It should match the golden sample in layout and structure. It is a form of destructive testing – once this test is performed, the part cannot be used.  

X-ray testing and XRF

X-ray testing shows defects through the electronic component without having to damage the die wafer inside. X-ray fluorescence (XRF) testing takes this a step further and can tell you the material composition of the component.  

In XRF an x-ray beam is directed at the component’s surface, then the atoms in the component produce a fluorescent x-ray beam that is processed by a detector. The differences between the energy of the original and x-ray beam correspond to different elements, which shows the elements used in manufacturing. Usually counterfeit components will have a slightly different material composition to parts directly from the manufacturer. 

Resurfacing, acetone and scrape testing

There are other effective forms of testing for avoiding counterfeit electronic components. 

Similar to decapping, remarking and resurfacing testing use solvents to corrode the top layers of a component. This, however, isn’t trying to get all the way to the wafer inside. It instead detects if the identification information on the component has been altered or remarked. It is not a destructive test since the wafer inside is left undamaged. 

The process counterfeiters often use is called ‘blacktopping’. The original chip markings are sanded off and a polymer coating is painted over to cover up the sanding markings 

Scrape testing is a similar, manual way of removing the top layers of a component. This shows if a component has had a clear coat applied to it, which is acetone-resistant and lowers the chances of counterfeit being revealed by remarking or decapsulation testing. 

The datasheet shows the discrepancies between the original and counterfeit component

The process counterfeiters often use is called ‘blacktopping’. The original chip markings are sanded off and a polymer coating is painted over to cover up the sanding markings 

Scrape testing is a similar, manual way of removing the top layers of a component. This shows if a component has had a clear coat applied to it, which is acetone-resistant and lowers the chances of counterfeit being revealed by remarking or decapsulation testing. 

Electrical testing/Curve trace testing

A relatively simple method is to test the component. Curve trace machines can test current, voltages, diode resistivity and silicon connectivity. This will detect any physical damage caused by heat, electrical overstress or electrostatic discharge damage.  

Choose Cyclops Electronics to avoid electronic counterfeit components

Nonfranchise distribution channels are a vital and legitimate part of any supply chain, particularly in the case of legacy products where parts may no longer be in production. The electronics industry has realised that, as counterfeiters become more and more proficient, there is not a ‘one size fits all’ measure that can be used to combat fraudulent parts entering the supply chain. 

At Cyclops Electronics, quality is at the core of everything we do. From our industry-leading component testing program to our commitment to continuous improvement, the quality of our components and service is our key tool to drive the highest customer satisfaction year after year. 

When it comes to counterfeit mitigation, component analysis is a crucial element to protect our customers’ supply chain.  

At Cyclops Electronics we continuously and thoroughly vet and monitor our supply chain. Since we also have a presence in China, we have the advantage of controlling our incoming goods from Asia in real time on a local level. A large proportion of counterfeit goods often come from China, but because of our presence there we can be much more vigilant than other brokers.  

The Cyclops counterfeit inspection process

Goods coming into the Cyclops warehouse go through a vigorous inspection process on arrival before they are even booked in. All components are photographed and undergo inspection based on the type of part, age, supply chain and specific customer requirements. Basic checks are performed, such as checking the quantity, part numbers and RoHS compliance. 

Our experienced inspectors have the training and technical expertise to ensure quality product reaches the end customer. Parts are then tracked through a barcode system, from supplier delivery note right though to customer despatch.  

Following this, if the parts are still factory sealed, we perform visual checks. If the components are not factory sealed, we are very diligent in our need for further testing. High resolution and secondary checks are undertaken, and testing continues depending on whether the part passes. 

We have very strict protocols in place for testing, and it always follows our process flow. For destructive tests like decapsulation, these are only undertaken in very specific circumstances and need to be requested by the customer. Thankfully, our combination of specialised testing facilities and our team of dedicated inspection staff mean these tests are not often required. 

At Cyclops Electronics we have several optical magnifiers that we use in-house. This includes, but is not limited to, Opticron Hand magnifiers, the vision engineering mantis and the Amscope microscope. We also perform acetone testing, black top testing, reel counters and decapsulation testing. 

Categories
Uncategorized

Facebook is going to put smart glasses on your face in 2021

You may recall that several years ago (back in 2013 to be exact), Google brought out Google Glass. This was a brand of smart glasses that used touch and voice commands to interact with online content, display directions and act as a phone. The product wasn’t a massive success, but it did kickstart a consumer-focused AR arm’s race.

When we talk about AR or augmented reality, with regards to glasses. We mean eyewear with technology that merges what you see in the real-world with an overlay of virtual information from the internet. Examples include directions to a supermarket when you walk and restaurant reviews when you look at a sign.

The AR market is predicted to be worth $100 billion by 2024 and the technology is advancing at a rapid rate. Facebook is the latest juggernaut to enter the fold, and they have plans to put smart glasses on your face by 2021.

Facebook’s move into AR

Facebook owns Oculus, the company behind some of the world’s most popular VR (virtual reality) headsets. AR goes beyond VR by adding digital elements to real life, as opposed to simulating a new environment entirely.

Oculus practically has the VR market sewn up already, so it hasn’t come as a surprise to us that CEO Mark Zuckerberg has recently revealed Project Aria, Facebook’s augmented reality research project that will deliver a product by 2021.

Announced during the fittingly remote Facebook Connect event, Zuckerberg said the goal is to “develop some normal-size, nice-looking glasses that you can wear all day, and interact with holograms, digital objects and information while still being present with the people and the world around you.”

It all sounds exciting, and though we have been here before with Google Glass, Facebook has a track record with VR. They could do the same with AR, and Project Aria is the research project that will deliver the technology needed.

The technology driving AR

To create an AR environment, you need sound, video, graphics, networking, and GPS data. AR requires good hardware and software. If Facebook intends to create “normal-size, nice-looking glasses”, the technology will also have to be refined.

Zuckerberg admits “there’s still a lot of work to be done on the foundational technologies,” but adds that “Project Aria is the first research device we’re putting out into the world to help us understand the hardware and software needed.”

To deliver the end product, Facebook has partnered with luxury eyewear giant Luxottica. It is expected that Facebook’s smart glasses will have Ray-Ban branding. This will help the glasses accommodate a wider range of styles.           

Specifications for the 2021 glasses have not been revealed. However, they are expected to be capable of overlaying directions, music recommendations, localised information (such as what’s around the corner), and integrate with some of Facebook’s features. It’s important to note, however, that nothing is certain.

Also, Facebook is working on its own 100% in-house AR eyewear, which it intends to thoroughly test before bringing any product to market. The tech giant has a reputation to uphold with eyewear (they own Oculus), and if their VR headsets are anything to go by, we are in for a treat when Facebook’s AR glasses finally land.

Categories
Uncategorized

Cyclops Group Brexit statement (IV) issued October 2020

Operational update

Cyclops group has robust plans in place for a variety of Brexit outcomes. Strategic Brexit planning has evolved over the last 2 years to incorporate the likelihood of several possible outcomes as well as a fully negotiated agreement. For this reason, the Business has been required to undertake a particularly extensive analysis of risk and therefore predicts no change to the essential service provided by Cyclops.

In the event of a no-deal exit, the UK Government has detailed that “The trade you carry out with the EU will broadly follow the customs controls that apply for the rest of the world.” As a business that has traded internationally for many years, we have a wide variety of country-specific trade processes in utilisation.

The most important element for undisrupted trade is the adoption and utilisation of a UK Economic Operator Registration and Identification number (EORI). This has been held by the Business for a number of years.

We have been working closely with our freight partners to ensure that they have sufficient plans in place to minimise any border disruption. We are entirely satisfied that all sensible precautions have been taken such as the recruitment of extra staff at the border. Furthermore, the Business operates from several worldwide locations and has a variety of re-deployment options available to it.

The Business continues to make adaptations as further information becomes available. The prioritization of our customer service delivery is firmly entrenched in our Business model and we seek to reassure our customers of our proactive approach.

Should you wish to discuss this further, please do not hesitate to make contact me.

David Yodaiken

Commercial Director

Davidy@cyclops-electronics.com

Categories
Uncategorized

What the future holds for passive and interconnecting electronic components

While the world economy is in freefall with the COVID-19 pandemic, with mass unemployment and trade plummeting, the global passive and interconnecting electronic components market is expected to continue growing thanks to demand from the developing world and the rise of 5G infrastructure.

Grand View Research has released forecasts for the passive and interconnecting electronic components market, predicting a compound annual growth rate of 5.3% from 2020 to 2027 with a slowdown from 2020 to 2021 due to COVID-19.

The future is by no means certain and we do not know exactly how badly the world economy will be impacted by the coronavirus outbreak. We do however have models that tell us demand will increase for electronics over time. This spells good news for components manufacturers and the wider electronics industry.

Changes in market demand

As the world economy is adversely impacted by the coronavirus outbreak, demand for electronic components in many verticals will slow. This can be traced back to the reality that in times of uncertainty, consumers are warier of spending money. Less demand for products means a slowdown in production and demand.

However, regardless of the world economy, some regions do have a stimulus. The United Kingdom, Japan, China, South Korea, and the US are rolling out 5G network infrastructure and this will stimulate the electronics market. Smartphones, tablets, drones, and other devices that rely on networking will be key beneficiaries.

So, it isn’t by any means doom and gloom for the global passive and interconnecting electronic components market. Growth is predicted from 2020 to 2027 and the COVID-19 outbreak will only slow down this growth temporarily.

How component sourcing has changed

In response to a fall in demand for products, passive and interconnecting electronic component production has slowed. In addition, a lot of stock hasn’t been used and is sitting in storage until such a time it is needed.

Prior to COVID-19, it was easy to think of component production as being in a state of perpetual motion for it was always present. Demand has fallen but that doesn’t mean it has ceased. Passive and interconnecting electronic components are still being sourced, albeit in smaller batches and more carefully than ever.

Another behavior we have witnessed is component hoarding. OEMs are unsure of their partner’s manufacturing capabilities in the face of COVID-19. So, they are hoarding components to ensure they can scale up demand when the time is right. This is considered normal behavior without a global pandemic, but we are seeing more extreme examples as a means to protect manufacturing output. Ultimately, this means there are fewer components to go around, which drives up the cost of certain components.

How we can help you with sourcing

The future may be uncertain but good preparation will help you through it. As your electronic component distribution partner, we can source components for you with access to all major manufacturers. We can source legacy, obsolete, state-of-the-art, and short production run components at prices that suit your margin. Visit our website or click here to use access to our component search and enquire with us. We are here to help you with your electronic component needs.

Categories
Uncategorized

Cyclops September COVID-19 Lead time Update

As we enter another global spike in COVID-19 more uncertainty rises in its impact it could have on electronic global supply chains and manufacturers.   

Manufacture Altera has had an increase in lead times to 15-16 weeks this is due to the demand from the server market. Analog devices have reported their lead times are more than 20 weeks on some parts, this is due to low capacity of ASP materials for medical parts.

Linear Technology have reported they are extending their LTM lead times to 20-24 weeks, while their LT series lead times currently stand at 16-20. LT1 and LTC1 are also unstable. Consequently, the company reported that parts used in medical equipment are experiencing unstable lead times, like Analog this is likely due to the impact of Covid-19 and the demand for medical supplies. NXP factories are experiencing wafer shortages and lack of production capacity. Their MPX/Sensor series has spiked to 26 weeks, the market price has risen by 20% this is a result in the sensors being used in medical treatments.

Maxim Integrated has announced due to the recent lockdown of Maxims Philippines factory has caused delays and lead times are remining at 14-16 with backlog unable to be pulled in. Similarly, company Microchip lead times are stretching to 16-20 weeks this is due to the limited factory capacity due to COVID-19. OMRON Micro switches are experiencing stretched lead times and increase in pricing particularly effecting the D2FC series. Lead times are now around 14-20 weeks. ROHM plants in Philippines are currently working at 50% due to COVID-19 quarantine.

AVX tantalum caps and F series parts are expecting shortage, the lead times have increased to a staggering 30-40 weeks, this has led to AVX not accepting lead time-based orders.

Need quicker lead times?

We are experiencing an increase in lead times due to COVID-19 as seen above manufactures are struggling to produce the mass quantity due to lock downs and shortage of staff.

We at cyclops electronics are here to provide those hard to find components in these challenging times. To search for your components please click here. Or email sales@cyclops-electronics.com for enquires.

Categories
Technology

5G Technology and drones – The future taking flight

The last decade has seen the commercial market for drones explode. The global drone market was estimated by PWC in 2016 to be worth just under £100 billion ($127bn) and that was 4 years ago before the emergence of 5G technology.

Rapid advancements in the propulsion, navigation, sensory and battery systems that power drones have brought about the likes of drone delivery services, aerial photography, and a new way to conduct mountain search and rescue operations.

These varied examples of drone applications perfectly illustrates the real usefulness of drones. Key to their adoption has been lithium-ion batteries that charge rapidly and better navigation systems that enable pinpoint control.

However, as drones have been increasingly adopted, our data transfer needs have increased and 4G technology has been shown up to be less than ideal.  

The need for 5G

5G can theoretically reach speeds of 10 gigabits per second and it is expected to reliably offer 1 Gbit/s to 2 Gbit/s in a few years.

This is much faster than 4G. For drones, it means faster data transfer and data collection, enabling real-time analysis and access to big data files quickly.

However, while much has been made about the increased speed of 5G over 4G (it is up to 100 times faster than 4G) the real value for drones is the lower latency.

Latency is the lag that occurs when resources are requested over a network. For example, you might wish to check wind speed when flying, but when you request the data, it takes a few seconds to load. This delay is caused by latency across the network.

Latency for 4G is around 30 milliseconds, whereas with 5G it’s below 5 milliseconds. In a best case scenario, the latency can be 1 millisecond.

This latency improvement is massive for drones. It makes reliable live view and live streaming possible. Real-time footage becomes a reality. Load times become imperceptible and responsiveness increases between devices.

Another area where 5G benefits drones is the 5G New Radio interface, which enables a higher number of devices to be used in one area over a wave spectrum. This means more devices can be controlled to reduce congestion.

Meeting demand for 5G component sourcing

5G is an exciting technology but it is still in its infancy, and up until now drone architecture has been designed around 4G.

5G requires different components to handle the speed increase and demands placed over the network. Drones need a new architecture to transfer data in milliseconds and transmit high-definition footage in real-time.

In short, the current technology has to evolve.

Sourcing components like ESCs, flight controllers, GPS modules, receivers, antennas and batteries for 5G drones will become more challenging as more players in the market start to evolve their products to meet demand.

Day-to-day component sourcing will require good contacts in the industry just as it always has. But the race to 5G will accelerate demand and increase competition. This is where the value of an electronic components distributor like us comes in.

We can supply active, passive and electro-mechanical components, including 5G components, working directly for you to procure the best components at the lowest prices. If the future is 5G, we’ll help you meet it.