Categories
Future

What is Borophene?

Borophene is one of the newest innovations in the two-dimensional material market and could have many uses in the future.

There has been an increasing interest in 2D materials in recent history. It started with graphene in the early 2000s and borophene is one of the latest.

The material itself wasn’t synthesised until 2015, but it was first simulated in the 90s to see how boron atoms would form a monolayer. To synthesise the material, boron atoms were condensed onto a pure silver surface.

The arrangement of silver atoms makes boron form a similar structure, but there can be gaps in it, giving the material a unique structure.

Advantages

Borophene has been found to have a lot of benefits, including its strength, flexibility and is a superconductor. Not only that, but it conducts both electricity and heat, and its purpose can be altered depending on the structure.

One of borophene’s more interesting abilities is how it can act as a catalyst. It can break down molecular hydrogen ions, and hydrogen and oxygen ions from water. Hydrogen atoms also stick to borophene, meaning it could be a potential material for hydrogen storage. In theory the material could store more than 15% of its weight in hydrogen, much more than its competitors.

Borophene is also being touted as the next anode material in future, more powerful lithium-ion (Li-ion) batteries. Borophene is said to have the largest storage capacity of any 2D material.

Disadvantages

There are several drawbacks to borophene as well. It can’t currently be used widely, and it is difficult to make in large quantities. The benefit of having a reactive material can also be a disadvantage, when it’s vulnerable to oxidation. The production process is costly, too.

Despite these negatives, there are hopes borophene will have a multitude of uses in the near future. Aside from Li-ion batteries, catalysis and hydrogen storage, it can also be used for flexible electronics.

Another potential future usage is the use of borophene for gas sensing applications thanks to its ability to absorb gas. Its large surface-area-to-volume ratios make it suitable for gas sensors too.

An optimistic outlook

If borophene can be manufactured in large quantities, it could be used in many applications in the future. It will be an interesting few years watching the development and progression of this material.

That will be helpful down the line, but in the here and now look to Cyclops. We have all the electronic components you need and will go out of our way to source reliably. Contact us today at sales@cyclops-electronics.com or call us on +44 (0) 1904 415 415.

Categories
Electronic Components

Superconductivity

Superconductivity is the absence of any electrical resistance of some materials at specific low temperatures. As a starting point this is pretty vague, so let’s define it a bit more clearly.

The benefits of a superconductor is that it can sustain a current indefinitely, without the drawback of resistance. This means it won’t lose any energy over time, as long as the material stays in a superconducting state.

Uses

Superconductors are used in some magnetic devices, like medical imaging devices and energy-storage systems. They can also be used in motors, generators and transformers, or devices for measuring magnetic fields, voltages, or currents.

The low power dissipation, high-speed operation and high sensitivity make superconductors an attractive prospect. However, due to the cool temperatures required to keep the material in a superconducting state, it’s not widely utilised.

Effect of temperature

The most common temperature that triggers the superconductor effect is -253⁰C (20 Kelvin). High-temperature superconductors also exist and have a transition temperature of around -193⁰C (80K).

This so-called transition temperature is not easily achieved under normal circumstances, hence why you don’t hear about superconductors that often. Currently superconductors are mostly used in industrial applications so they can be kept at low temperatures more efficiently.

Type I and Type II

You can sort superconductors into two types depending on their magnetic behaviour. Type I materials are only in their superconducting state until a threshold is reached, at which point they will no longer be superconducting.

Type II superconducting materials have two critical magnetic fields. After the first critical magnetic field the superconductor moves into a ‘mixed state’. In this state some of the superconductor reverts to normal conducting behaviour, which takes pressure off another part of the material and allows it to continue as a superconductor. At some point the material will hit its second critical magnetic field, and the entire material will revert to regular conducting behaviour.

This mixed state of type II superconductors has made it possible to develop magnets for use in high magnetic fields, like in particle accelerators.

The materials

There are 27 metal-based elements that are superconductors in their usual crystallographic forms at low temperatures and low atmospheric pressure. These include well-known materials such as aluminium, tin and lead.

Another 11 elements that are metals, semimetals or semiconductors can also be superconductors at low temperatures but high atmospheric pressure. There are also elements that are not usually superconducting, but can be made to be if prepared in a highly disordered form.