Categories
Electronic Components Future Supply Chain

India increasing chip manufacture

In recent years India has been increasing its share in the electronics industry, planning to become a hub in the future.

Currently India has a lot of dependence on imported chips, heavily relying on the Chinese supply chain. One of its goals is to be, in part, autonomous in its chip production. The supply chain issues brought about by covid and other global factors really highlighted this.

But it is not easy to just move production of something so complicated to another country. It would require massive amounts of funding to reshore production.

Make in India

In 2021 the Indian government announced funding equal to $10 billion to improve domestic production over the next 5 years. Several companies have put in bids for the funding, including Vedanta, IGSS Ventures, and India Semiconductor Manufacturing Corp.

The funding is part of the Government of India’s ‘Make in India’ plan, encouraging investment and innovation in the country. Prime Minister of India Narendra Modi announced the initiative in 2014, focusing on 25 sectors including semiconductors and automobiles.

Domestic reliance

One of India’s goals is to move away from reliance on imports, on which they currently spend $25 billion annually. Only 9% of India’s semiconductor needs are met domestically. If production is reshored in part, this would increase local jobs and income for the country.

As it stands, India currently has more of a focus on R&D but don’t have fabs for assembly and testing. The nearby Singapore and manufacturing powerhouse Taiwan provide most of its current stock.

A change in the air, and in shares?

The recent approval of the Chips Act in the US means there may be a shift in industry shares. At the moment America has a 12% share, but if production is re-shored this may impact the Asian market.

However, India and the US, alongside the UAE and Israel plan to form an alliance. With financial aid from the bigger players, the alliance plans to focus on infrastructure and technology.

India was the US’s 9th largest goods trading partner in 2021, with $92 billion in goods trade in 2019. India is also the EU’s 10th largest trading partner, but with domestic semiconductor industry growth this might change.

India’s end equipment market revenue was $119 billion at the end of 2021. Its annual growth rate is predicted to be 19% in the next 5 years.

India is aware of the importance of the semiconductor industry, and set up an India Semiconductor Mission (ISM) in 2021. Its goal is to create a reliable semiconductor supply chain, and to become a competitor against giants like the US.

Relish the competition

India’s potential in the semiconductor industry is increasing, and there is likely to be more investment in the future. It is difficult to tell how much further down the line it would be before India becomes a competitor, but the coming years are sure to be interesting.

Categories
Electronic Components Future Semiconductor Technology

The effect of AI on the electronics supply chain

AI and machine learning technology is improving all the time and, consequently, the electronics industry is taking more notice. Experts predict that the application of AI in the semiconductor industry is likely to accelerate in the coming years.

The industry will not only produce AI chips, but the chips themselves could be harnessed to improve the efficiency of the electronic component supply chain.

What’s included

In an AI chip there is a GPU, field-programmable gate arrays (FPGAs), and application-specific integrated circuits (ASICs) specialized for AI.

CPUs were a common component used for basic AI tasks, but as AI advances they are used less frequently. The power of an AI depends on the number and size of transistors it employs. The more, and smaller, the transistors, the more advanced the AI chip is.

AI chips need to do lots of calculations in parallel rather than sequentially, and the data they process is immense.

Think about it

It’s been proposed by some that designing AI chips and networks to perform like the human brain would be effective. If the chips acted similarly to synapses, only sending information when needed, instead of constantly working.

For this use, non-volatile memory on a chip would be a good option for AI. This type of memory can save data without power, so wouldn’t need it constantly supplied. If this was combined with processing logic it could make system on a chip processors achievable.

What is the cost?

Despite the designs being created for AI chips, production is a different challenge. The node size and costs required to produce these chips is often too high to be profitable. As structures get smaller, for example moving from the 65nm node to the latest 5nm, the costs skyrocket. Where 65nm R&D cost $28 million, 5nm costs $540 million. Similarly with fab construction for the same two nodes, price increased from $400 million to $5.4 billion.

Major companies have been making investments into the R&D of AI chip infrastructure. However, at every stage of the development and manufacturing process, huge amounts of capital are required.

As AI infrastructure is so unique depending on its intended use, often the manufacturers also need to be highly specialized. It means that the entire supply chain for a manufacturer not yet specialized will cost potentially millions to remodel.

Beauty is in the AI of the beholder

The use of AI in the electronics industry could revolutionize how we work, and maximize a company’s profits. It could aid companies in supply forecasts and optimizing inventory, scheduling deliveries and so much more.

In every step of the electronics supply chain there are time-consuming tasks that AI and machine learning could undertake. In the sales stage, AI could assist with customer segmentation and dynamic pricing, something invaluable in the current market. It could additionally prevent errors in the manufacturing process and advance the intelligence of ICs and semiconductors manufactured.

Artificial intelligence

We’re not quite at the stage where AI has permeated throughout the industry but it’s highly likely that it will in the coming years. That said, this blog post is all speculation and is in no way to inform decisions.

Cyclops can provide all types of electronic components, no matter what you’re building. See how we can help you by getting in touch today. Contact us at sales@cyclops-electronics.com, or use the rapid enquiry form on our website to get results fast.

Categories
Component Shortage Passive Components

The tech industry is bracing for a potential shortage of passive electronic components

By now, everyone has heard of the global semiconductor shortage. Still, the tech industry is bracing itself for an altogether larger shortage of passive electronic components that could reduce manufacturing output across multiple categories.

Passive components do not generate energy but can store and dissipate it. They include resistors, inductors (coils), capacitors, transformers, and diodes, connecting to active elements in circuits. Passives are necessary for circuit architecture, so the shortage is bad news for the electronics industry as a whole.

The current state of the passive component shortage 

The truth is there has been a shortage of certain passive components since the coronavirus pandemic hit in 2020, particularly with multilayer ceramic capacitors (MLCCs), which can be difficult to get hold of in large quantities.

Certain diodes, transistors and resistors are also in shorter supply than they were in 2019, partly because of the pandemic and a shift in manufacturing investment for active components, which have a higher margin.

You also need to look at consumer trends (what people are buying). Smartphone and smartwatch sales are higher than ever, and smart ‘Internet of Things’ devices are growing in popularity rapidly, not to mention in availability.

These devices require a lot of passive components. For example, a typical smartphone requires over 1,000 capacitors. Cars are also huge consumers of passive components, with an electric car requiring around 22,000 MLCCs alone.

The trend for next-generation technology adoption is up across all categories, be it the Internet of Things, edge computing, semi-autonomous cars and 5G. Passive components are in more demand than ever at a time when supplies are under pressure.

Price rises are now inevitable 

The price for most passive components has risen by the largest amount in over a decade in 2021, caused by supply and demand economics and a price explosion for common materials like tin, aluminium and copper, as well as rare earth metals.

While some suppliers can afford to take a hit on profits, for most, raising prices is inevitable to ensure the viability of operations.

With higher component prices and greater shortages, it is more important than ever for companies to bolster their supply chains. Complacency is dangerous in today’s market, and no company is immune to disruption.

How to beat the passive components shortage 

The passive components shortage is likely to get worse before it gets better, but there are several ways you can bolster your supply chain:

  • Equivalents:Specifying equivalent passive components is a sound way to keep your supply chain moving. When a specific passive component isn’t available, an equivalent may be available that functions in exactly the same way.
  • Ditch outdated components:Outdated components have limited or no manufacturing output when discontinued. Upgrading to modern components that are manufactured in larger quantities can help you meet demand.
  • Partner with a global distributor:Global components distributors like us source and deliver day-to-day, shortage, hard-to-find and obsolete electronic components. We can help keep your supply chain moving in uncertain times. Contact us today SALES@CYCLOPS-ELECTRONICS.COM
Categories
Electronic Components Semiconductor

Who are the biggest players in the semiconductor industry?

Over the next decade, demand for semiconductors is going to go supersonic thanks to secular and cyclical tailwinds.

Semiconductors are the building blocks of the information age; every device that will be ‘connected’ needs a semiconductor. The companies that manufacture semiconductors are the unsung heroes of the future. But who are they?

In this article, we will briefly cover the biggest players in the semiconductor industry.

Foundries

Foundries concentrate on manufacturing and testing physical products for fabless companies. Some companies, like Intel, are both fabless and foundry, meaning they design and make their chips. Foundries often serve as a non-competitive manufacturing partner for fabless companies. The following list contains the biggest foundries:

TSMC

TSMC (Taiwan Semiconductor Manufacturing Company) is the world’s largest semiconductor manufacturer by a significant margin. They are expected to capture 56% of the semiconductor market in 2021 (up from 54% in 2020). 

UMC

UMC (United Microelectronics Corporation) is a Taiwanese company. They are the second largest semiconductor foundry in the world behind TSMC. UMC specialise in mature nodes, such as 40nm nodes and other speciality logic.

SMIC

SMIC (Semiconductor Manufacturing International Corporation) is a Chinese company. They are the third largest semiconductor manufacturer in the world. They specialise in process nodes from 0.35 micron to 14 nanometres.

Samsung

Samsung Electronics is a South Korean company. They are the world’s largest manufacturer of DRAM and the world’s fourth largest semiconductor manufacturer. They are expected to occupy 18% of the semiconductor market in 2021.  

Micron

Micron is an American company. They are the second largest manufacturer of DRAM (dynamic random-access memory) behind Samsung. DRAM is semiconductor memory used in consumer electronics, computing equipment and IoT devices.

SK Hynix

SK Hynix is a South Korean company. They are the world’s third largest manufacturer of DRAM and a leading manufacturer of NAND flash memory. In 2019, they developed HBM2E, the world’s fastest high bandwidth memory.

NXP Semiconductors

NXP Semiconductors is a Dutch-American company. They manufacture ARM-based processors, microprocessors and logic across 8, 16 and 32-bit platforms. Their products are used in automotive, consumer, and industrial markets.

Powerchip

Powerchip Technology Corporation is a Taiwanese company. They manufacture DRAM and memory chips, semiconductors and integrated circuits. They use a 300mm wafer production technology which can produce advanced and mature chips.

ON Semiconductor

ON Semiconductor is an American company. They design and fabricate chips and microprocessors for automotive, aerospace, industrial, cloud and Internet of Things devices. They have over 45 years’ of experience in the foundry business.

Fabless companies

“Fabless” means outsourced fabrication. Fabless companies concentrate on the research and development of chips and semiconductors. They then outsource the manufacturing of the product to a foundry. This relationship is non-competitive, and the foundry is normally a silent partner. The following list contains the biggest fabless companies:

MediaTek

MediaTek is a Taiwanese company. By market share, they are the world’s leading vendor of smartphone chipsets. They are also a leading vendor of chipsets for other consumer electronics including tablets and connected TVs.

Qualcomm

Qualcomm is an American company. They are the world’s biggest fabless company. Their product catalogue includes processors, modems, RF systems, 5G, 4G and legacy connectivity solutions. They are best-known for Snapdragon Series processors.

Broadcom

Broadcom is an American company. Depending on which figures you read, they are either the first or second largest fabless company in the world. Broadcom’s products serve the data centre, networking, software, broadband, wireless, and storage and industrial markets.

NVIDIA

NVIDIA is an American company. They are the market leader for high-end graphics processing units (GPUs). In 2020, NVIDIA GeForce GPUs accounted for 82% of GPU market share. This is significantly more than AMD Radeon graphics cards, which accounted for 18%.

AMD

AMD is an American company. They design high-performance GPUs and processors for computers, where they command the second biggest market share behind Intel. Their GPUs compete against NVIDIA’s but are not considered as powerful.

Himax

Himax is a Taiwanese company. They are a leading vendor of automotive chips and semiconductors for connected devices. Their semiconductors are used in TVs, monitors, laptops, virtual reality headsets, cameras and much more.

Realtek

Realtek is a Taiwanese company. They are a fabless semiconductor company focused on developing IC products (integrated circuits). They are best-known for SoCs (System-on-Chips) network (Ethernet) and wireless (Wi-Fi) interface controllers.

Integrated device manufacturers

Some companies have foundry and fabless arms. These companies often design and fabricate their own products or design and fabricate chips for others. These integrated device manufacturers (IDMs for short) blur the line between foundry and fabless with an in-house production process that utilises little if any outsourcing. IDMs include:

Intel

Intel is an American company. They design and manufacture their own chips which they package into CPUs. Intel’s market share in the CPU market has declined in recent years, but they remain one of the top semiconductor manufacturers.

Analog Devices

Analog Devices is an American company. They have a 150mm wafer fab and a 200mm wafer fab. They have fabless production facilities and have made numerous fabless acquisitions over the years, such as OneTree Microdevices in 2017.

Texas Instruments

Texas Instruments is an American company. They have 14 manufacturing sites including silicon foundries. They specialise in the production and manufacture of wafers, digital signal processors, integrated circuits and embedded processors.

Overall

You may have noticed that the US and Taiwan dominate the semiconductor industry on the foundry and fabless side. Among the biggest semiconductor companies, the largest proportion are based in the United States. However, Taiwan is the foundry king, with the two biggest players based there (TSMC and UMC).

Semiconductors are used in all electronics that require computing power, including smartphones, PCs, and data centres and cars. A surge in demand for chip-based products will fuel the need for more semiconductors in the future. It will be up to the big players on this list to meet that demand and power our future.

en_GBEnglish