Categories
Future

Origami looking robots

A research team has created folding origami-looking robots that do not rely on semiconductors.

The challenge

In the past this has been a difficult balance to find, as
rigid semiconductors cannot be placed on foldable devices. Similarly, regular computer chips are too heavy to be placed on lightweight devices. Advanced robot capabilities like analysing, sensing and responding to the environment can traditionally only be performed by these computer chips.

The team at the University of California (UCLA) got around some of these issues with innovative technology. Electrically conductive and flexible semiconductor materials embedded into a pre-cut thin polyester film sheet act as a network of transistors. Then, sensors and actuators can be integrated in.

Once the materials were cut, folded and assembled, the sheet became a robot able to sense, analyse and respond to its environment.

Origami MechanoBots

The UCLA Samueli School of Engineering group made three versions of the ‘OrigaMechs’ (Origami MechanoBots):

·        A walking robot that can reverse if its antennae
sense an obstacle.

·        A ‘Venus flytrap-like’ robot that can enclose its
‘prey’ when its jaws detect an object.

·        A two-wheeled robot that can move along pre-designed
paths of geometric patterns, and can be reprogrammed.

The team hopes to make the robots autonomous with an
embedded thin-film lithium battery power source in the future. For the demonstration they were connected to a power source.

Going forward

There are high hopes for the OrigaMechs and their successors in the future, since small lightweight robotics could have a wide range of uses. Its potential uses include situations involving strong magnetic or radiative fields, high electrostatic discharges, or intense radio frequencies.
These environments are usually unsuitable for regular semiconductors. The OrigaMechs can also be specially designed for functions and manufactured quickly.

The team are especially hopeful that the robots could be
used for future space missions. Weight and size are two vital factors in space cargo, so these essentially flat-pack robots could be endlessly useful.

Enter the fold

For those sourcing regular semiconductors, contact Cyclops. We can source day-to-day or hard to find components with ease, and can guarantee our customers the best price. Get in touch via sales@cyclops-electronics.com or call us on +44 (0) 1904 415 415.

Disclaimer: This blog is purely for informational
purposes and is not instructional. 

Categories
Future

The future of haptic technology

One of the most interesting areas of electronics research right now is into the potential applications of haptic technology.

What is haptic technology?

Anything ‘haptic’ refers to touch. As such, haptic technology encompasses technical devices or innovations that create tactile simulations.

Haptics can be used across a huge variety of products, from the vibrations when you press a button on your smartphone, to life-like human-robot interactions.

There are three main types of technology in haptics: graspable, wearable, and touchable.

Touchable:

One of the most ubiquitous uses of haptics is in the touchable screens of smartphones and tablets. A tactile response is when something responds to touch, so when you touch your smartphone and it vibrates in response.

Graspable:

A good example of the graspable category of haptics would be joysticks used in video gaming. Depending on the pressure and angle exerted on the joysticks, the game responds accordingly. The kinaesthetic feedback from devices like joysticks or game controllers can be felt in more than just our fingertips.

For slightly more serious use-cases, look no further than military bomb disposal units. By using graspable haptics systems, operators can use robots to defuse bombs without putting any people at risk.

Wearable:

These devices usually use pressure, friction or temperature to create a tactile experience. Haptics are used in some smart watches, which can have a tactile response when scrolling or clicking.

Companies working in haptics

There are several labs and research facilities that are making a name for themselves in haptics. A Swiss lab working for the Swiss Federal Institute of Technology (EPFL) has some interesting projects underway. The University of South Carolina also has a Haptics Robotic and Virtual Interaction (HaRVI) lab. Many universities also have research centres dedicated to haptic technology, including Stanford and King’s College London.

There are some big names also researching the utilisation of haptics too. Companies like Disney are researching different ways to use haptic technology, including interactions between humans and robots and haptic jackets.

The future of haptics

There’s so much research being done into the applications of haptic technology, including some things that could be revolutionary. Among other things the University of South Carolina are working on a device called ‘Grabity’, which is trying to add the feeling of weight and gravity to graspable haptics. As you can imagine, it’s difficult to add the perception of a different weight to a graspable device. The way they do this is through the use of voice coil actuators. These electronic components convert electric signals into magnetic force, giving a feeling similar to gravity.

Several labs and companies are also working on haptic soft pneumatic actuator (SPA) skin. This invention could be used in soft robotics, which in turn could be used for an array of life-changing applications. The skin could go onto invasive surgical instruments and rehabilitation devices since it can safely interact with the human body.

Disney’s research division has several haptic projects running, including one for haptic telepresence robots. The robot uses hydraulic and pneumatic lines, combined with a remote person controlling the robot.

So close you can almost touch it

Haptics is a constantly evolving field of research with some really exciting potential developments down the line.

However, something you don’t have to wait for is finding those electronic components you’ve been searching for. Cyclops is on hand to fulfil all your semiconductor requirements, be it new, obsolete or anything in between. Contact us today to find those components you’ve been looking for on +44 (0) 1904 415 415. Alternatively, email us at sales@cyclops-electronics.com

Categories
Technology

Celebrating women in tech/electronics

In celebration of International Women’s Day, we have made a list of some of the amazing women in tech. Of course, there are hundreds more so please don’t worry if your favourite lady doesn’t feature!

Edith Clarke

Born in 1883, Clarke studied mathematics and astronomy before becoming a civil engineering student at the University of Wisconsin. After also earning a master’s in electrical engineering, Clarke filed a patent for her ‘graphical calculator’. The calculator was used to solve electric power transmission line problems. The engineer also made history by becoming the first female electrical engineering professor in the US in 1947.

Yoky Matsuoka

Before working for big names including Apple, Google and Nest, Matsuoka received awards for her work in robotics and neuroscience. With the grant she went on to found a non-profit organisation. The NGO focused on removing reading barriers for children with physical and learning challenges.

Matsuoka also founded the Centre for Sensorimotor Neural Engineering and Neurobotics Laboratory. This centre works to create devices that can restore sensation and movement in human bodies. Since then she has gone onto work in innovation and health, and now run independent Panasonic subsidiary Yohana.

Kristina M Johnson

Among other achievements, Johnson is known for her research in optoelectronics. While working with Empire State Development, she signed many industry partnerships with companies including IBM and Applied Materials.

Since then, she has co-founded organisations including ColorLink, which later became part of RealD, responsible for the Real3-D system using in hundreds of movies, including Avatar. Johnson has also done a lot of revolutionary work in clean energy and sustainable infrastructure.

Caroline Haslett

Haslett was instrumental in opening the world of engineering up to women. The women’s right campaigner was born in 1895, and only 19 years later she was working for an engineering firm that made steam boilers. In the following years she joined the Women’s Engineering Society, then the Director of the Electrical Association for Women.

Later in life Haslett was made a Dame Commander of the Order of the British Empire.

Melonee Wise

As CEO of Fetch Robotics, Wise spent her days researching, developing, and delivering robotics for the logistics industry. Since then, Fetch has been acquired by Zebra Technologies, and Wise has become VP and General Manager of Robotics Automation.

She has featured in Business Insider and the Silicon Valley Business Journal for achieving so much at a young age. Wise’s speciality is in Autonomous Mobile Robots (AMRs) for warehousing and logistics.

Lisa Su

Dr Su is chair and CEO of AMD. She joined the company in 2012 as senior VP and general manager. Prior to this, Su worked at Freescale Semiconductor Inc. in the areas of global strategy, marketing and engineering.

Before this, Dr Su spent years working for Texas Instruments and IBM. In 2018 she received the Global Semiconductor Association’s Dr Morris Chang Exemplary Leadership Award.

Lalitha Suryanarayana

Recently Suryanarayana has joined the Global Semiconductor Alliance Women’s Leadership Council. Alongside that, she is VP, Strategy, Mergers & Acquisitions at Infineon Technologies. Previously, Suryanarayana was senior director for Qualcomm Technologies, and before that worked at AT&T.

Debora Shoquist

Shoquist is executive VP of operations at NVIDIA, and is responsible for the company’s IT, operations and supply chain functions. She is also overseeing construction of the company’s new building at its Santa Clara headquarters, worth $360-380 million.

After joining NVIDIA in 2007, it only took her two years to move from senior VP to executive VP. Before that she worked at Quantum, Coherent, and JDS Uniphase.

Ann B Kelleher

As executive VP and general manager of Technology Development at Intel, Dr Kelleher is responsible for research, development and deployment of next-gen silicon logic, packaging and test technologies.

Kelleher started her electronics leadership journey in Ireland working for Intel’s Fab 24. She later moved to the US to manage the company’s Fab 12 facility in Chandler, Arizona.

Recognition

We know how important it is to recognise all of our staff, both male and female, and the contributions they make to the company and society. That is why International Women’s Day, and other celebrations like it, are so important to us. To find out more about International Women’s Day, follow this link.

Categories
Electronic Components Technology

NXP Announces i.MX 9 and i.MX 8 processor line for Intelligent Multi-sensor Applications

NXP Semiconductors has announced a new line of edge processors that deliver a giant leap in performance and security at the edge.

As edge computing rapidly evolves around us and demand for edge computing soars, performance demands are increasing at an exponential rate. This requires a new approach to security, power consumption and performance. Existing edge processors offer a solution now but are not ready for the next generation of real-time data.

Technologies like machine learning, artificial intelligence, robotics, autonomous driving and next-gen wireless infrastructure all depend on the edge. NXP Semiconductors is meeting the challenge with new i.MX 9 and i.MX 8 processor lines.

i.MX 8ULP and i.MX 8ULP-CS

The ultra-low power i.MX 8ULP and i.MX 8ULP-CS (cloud secured) Microsoft Azure Sphere-certified processors have the EdgeLock secure enclave, a pre-configured security subsystem that simplifies complex security technologies and helps designers avoid costly errors. It automates the following security functions:

  • Root of trust
  • Run-time attestation
  • Trust provisioning
  • Secure boot
  • Key management
  • Cryptographic services

The i.MX 8ULP-CS is Microsoft Azure Sphere-certified with Microsoft Pluton enabled on EdgeLock for highly secure hardware. With Azure Sphere, it has chip-to-cloud security built in, enabling use in a wide range of applications.

Both i.MX processors utilise Energy Flex architecture, which delivers as much as 75% improved energy efficiency compared to previous generations.

They have heterogeneous domain processing and 28nm FD-SOI process technology, making them among the most advanced edge chips in the world. The processors have one or two 1GHz Arm Cortex-A35 processors, a 216MHz Cortex-M33 real-time processor and a 200MHz Fusion DSP for low-power voice and sensor hub processing.

Every Azure Sphere-certified i.MX 8ULP-CS device also gets ongoing OS and security improvements for over ten years.

i.MX 9

The i.MX 9 series is NXP Semiconductors’ range-topping high-performance edge processor for intelligent multi-sensor applications.

The i.MX 9 debuts a new generation of processors that have an independent MCU-like real-time domain and dedicated multi-sensory data processing engines for graphics, image, display, audio, and voice. The i.MX 9 series also features EdgeLock secure enclave, Energy Flex architecture, and hardware neural processing.

The i.MX 9 is for the next generation of edge computing applications including machine learning and artificial intelligence. It’s the first NXP line to use the Arm Ethos U-65 microNPU which enables low-power machine learning.

Importantly, Azure Sphere chip-to-cloud security is enabled within the i.MX 9 line, providing a clear upgrade path from the i.MX 8 series.

EdgeLock secure enclave is the big ticket item of the new processor lines, combining complex security technologies into a single pre-configured platform. With device-wide security intelligence, it provides a simplified path to certification, enabling non-stop trusted management services and applications.

So what?

With the release of these new processors, organisations of any size can now pursue IoT development and real-time technologies with the confidence that NXP and Microsoft have laid out a foundation of security via Microsoft Azure. The low-power requirements and chip-to-cloud security deliver innovation in the right areas.

You can find out more about the processors here.

If you are looking for NXP parts contact us today! sales@cyclops-electronics.com 

Categories
Electronic Components Future Technology

What does the future hold for the electronic component industry?

The future of the electronic component industry looks very healthy indeed thanks to tailwinds from 5G, robotics and automation, artificial intelligence, edge computing and several other emerging technologies.

A few of the companies destined to benefit from the advancement of these technologies include Infineon Technologies, STMicroelectronics, Würth Elektronik, Eaton Corp, Micron, MaxLinear, Hitachi and Qualcomm. There are hundreds more who are operating foundries and factories at maximum capacity to meet demand already.

Key to meeting the demand is an increase in manufacturing capability, which many companies will have to build through capital expenditure. We are already seeing an increase in investment from many of the aforementioned companies.

As for electronic component distributors, the phrase “a rising tide raises all ships” is a perfect expression. Component distributors like us will see an increase in demand in the future as our world becomes more technology-focussed.

These are the technologies that we see fuelling electronic component growth in the near future (we already mentioned a few in our opening paragraph):

  • 5G
  • Wi-Fi 6
  • Big data
  • Edge computing
  • AI
  • Robotics
  • Biotechnology
  • Batteries and power
  • Displays
  • Semiconductors and GPUs
  • Automated driving
  • Consumer electronics: VR, AR, smartphones, tablets

Every infrastructure, and every product, will need a unique set of electronic components in its design. Factories and foundries will make the components, and electric component distributors will help manufacturers source them.

Meeting the uptick in demand

There’s one certainty in the electronics industry: demand on components increases as technologies become more complex. We see this with semiconductors, which are getting smaller (2nm), with 5G, which requires more components than 4G, and in robotics, which require powerful Lidar guidance systems.

To meet this uptick in demand, there are companies that specialise in making specific components and machines.

For example, Axcelis Technologies, headquartered in Beverly, Massachusetts, makes ion implant equipment vital to semiconductor fabrication. Then we have Micron, who recently announced high-density 3D NAND flash memory.

The innovation and investment in new technologies from leading companies is a clear sign that the electronic component industry is not just healthy, but thriving, despite the disruption caused by COVID-19.

The role of electronic component distributors

Our place in all this as an electronic component distributor is to help our customers (who include OEMs, foundries, factories and assemblers) to source the components they need to operate their business.

We are crucial to our customers because we are a global distributor. We enable industry players to buy electronic components with confidence at competitive prices, and our links in the industry allow our customers to gain a competitive edge.

As demand has increased for electronic components, competition has intensified, and it really isn’t uncommon for companies to have to bid for components. This is the result of a market that doesn’t produce enough components for certain applications. We exist to help all companies source the components they need.

With us, you get a fast response to your enquiries and reliable on time delivery. There’s no better partner to have on your side.

Click Here and visit our site today to use our fast component search tool and enquire with us today!

Categories
Uncategorized

The multimodal transistor (MMT) is a new design philosophy for electronics

Researchers from the University of Surrey and University of Rennes have developed a technology called the multimodal transistor (MMT), which could revolutionise electronics by simplifying circuits and increasing design freedom.

The multimodal transistor is a thin-film transistor that performs the same job as more complex circuits. The MMT sandwiches metals, insulators and semiconductors together in a package that’s considerably thinner than a normal circuit.

However, the key breakthrough with the MMT is its immunity to parasitic effects (unwanted oscillations). The MMT allows consistent, repeatable signals, increasing a transistor’s performance. This is necessary for precision circuits to function as intended and is especially useful for next-gen tech like AI and robotics.

How it works

In the image below, we can see the design of the MMT. CG1 provides the means to control the quantity of charge, while CG2 is the channel control gate. CG1 controls the current level and CG2 controls the on/off state.

This is a massive shift in transistor design because it enables far greater engineering freedom. It is a simple and elegant design, yet it is so useful. It has numerous applications in analogue computation and hardware learning.

Digital-to-analogue conversion

MOSFET transistors are one of the building blocks of modern electronics, but they are non-linear and inefficient.

In a conventional circuit, gate electrodes are used to control a transistor’s ability to pass current. The MMT works differently. Instead of using gate electrodes, it controls on/off switching independently from the amount of current that passes through. This allows the MMT to operate at a higher speed with a linear dependence between input and output. This is useful for digital-to-analogue conversion.

The breakthrough in all its glory

The MMT transforms the humble transistor into a linear device that delivers a linear dependence between input and output. It separates charge injection from conduction, a new design that achieves independent current on/off switching.

There is a profound increase in switching speed as a result of this technology, enabling engineers to develop faster electronics. Researchers estimate that the switching speed is as much as 10 times faster. Also, fewer transistors are needed, increasing the yield rate and reducing the cost to manufacture the circuit.  

Just how revolutionary the MMT will be remains to be seen. After all, this is a technology without commercialisation. It could find its way into the electronics we use on a daily basis, like our phones. The potential is for the MMT to be printable, allowing for mass production and integration into billions of electrical devices.

With devices getting smarter and digital transformation advancing at a rapid rate, the electronics industry is booming. Semiconductor foundries are at peek capacity and more electrical devices are being sold than ever. The MMT is a unique solution to a problem, and it could make manufacturing electronics cheaper.   

With this, comes a great opportunity for the MMT to replace MOSFET transistors. We can think of few other design philosophies with such wicked potential.