Categories
Electronic Components Future Technology

What is the Internet of Things?

EveryThing

In terms of IoT, a ‘Thing’ is anything that can transfer data over a network and can have its own IP address. They are most often ‘smart’ devices, that use processors or sensors to accumulate and send data.

These devices have little-to-no need for human interaction, except in cases where the smart device is controlled by a remote control or something similar. Due to the low cost of electronic components and wireless networks being readily available, it’s possible for most things to become, well, Things.

Technically, larger items like computers, aeroplanes, and even phones, cannot be considered IoT devices, but normally contain a huge amount of the smart devices within them. Smaller devices, however, like wearable devices, smart meters and smart lightbulbs can all be counted as IoT items.

There are already more connected IoT devices than there are people in the world, and as more Things are produced this progress shows no sign of slowing.

Applications of IoT

The automation and smart learning of IoT devices has endless uses and can be implemented in many industries. The medical industry can use IoT to remotely monitor patients using smart devices that can track blood pressure, heart rate and glucose levels, and can check if patients are sticking to treatment plans or physiotherapy routines.

Smart farming has garnered attention in recent years for its possibly life-saving applications. The use of IoT devices in the agricultural industry can enable the monitoring of moisture levels, fertiliser quantities and soil analysis. Not only would these functions lower the labour costs for farmers substantially but could also be implemented in countries where there is a desperate need for agriculture.

The industrial and automotive industries also stand to benefit from the development of IoT. Road safety can be improved with fast data transfer of vehicle health, as well as location. Maintenance could be performed before issues begin to affect driving if data is collected and, alongside the implementation of AI, smart vehicles and autonomous cars could be able to drive, brake and park without human error.

What’s next?

The scope of possibilities for IoT will only grow as technology and electronics become more and more accessible. An even greater number of devices will become ‘smart’ and alongside the implementation of AI, we will likely have the opportunity to make our lives fully automated. We already have smart toothbrushes and smart lightbulbs, what more could be possible in the future?

To make it sustainable and cost-effective, greater measures in security and device standardisation need to be implemented to reduce the risk of hacking. The UK government released guidelines in 2018 on how to keep your IoT devices secure, and a further bill to improve cyber security entered into law in 2021.

If you’re looking for chips, processors, sensors, or any other electronic component, get in touch with Cyclops Electronics today. We are specialists in day-to-day and obsolete components and can supply you where other stockists cannot.

Contact Cyclops today at sales@cyclops-electronics.com. Or use the rapid enquiry form on our website to get fast results.

Categories
Component Shortage

The tech industry is bracing for a potential shortage of passive electronic components

By now, everyone has heard of the global semiconductor shortage. Still, the tech industry is bracing itself for an altogether larger shortage of passive electronic components that could reduce manufacturing output across multiple categories.

Passive components do not generate energy but can store and dissipate it. They include resistors, inductors (coils), capacitors, transformers, and diodes, connecting to active elements in circuits. Passives are necessary for circuit architecture, so the shortage is bad news for the electronics industry as a whole.

The current state of the passive component shortage 

The truth is there has been a shortage of certain passive components since the coronavirus pandemic hit in 2020, particularly with multilayer ceramic capacitors (MLCCs), which can be difficult to get hold of in large quantities.

Certain diodes, transistors and resistors are also in shorter supply than they were in 2019, partly because of the pandemic and a shift in manufacturing investment for active components, which have a higher margin.

You also need to look at consumer trends (what people are buying). Smartphone and smartwatch sales are higher than ever, and smart ‘Internet of Things’ devices are growing in popularity rapidly, not to mention in availability.

These devices require a lot of passive components. For example, a typical smartphone requires over 1,000 capacitors. Cars are also huge consumers of passive components, with an electric car requiring around 22,000 MLCCs alone.

The trend for next-generation technology adoption is up across all categories, be it the Internet of Things, edge computing, semi-autonomous cars and 5G. Passive components are in more demand than ever at a time when supplies are under pressure.

Price rises are now inevitable 

The price for most passive components has risen by the largest amount in over a decade in 2021, caused by supply and demand economics and a price explosion for common materials like tin, aluminium and copper, as well as rare earth metals.

While some suppliers can afford to take a hit on profits, for most, raising prices is inevitable to ensure the viability of operations.

With higher component prices and greater shortages, it is more important than ever for companies to bolster their supply chains. Complacency is dangerous in today’s market, and no company is immune to disruption.

How to beat the passive components shortage 

The passive components shortage is likely to get worse before it gets better, but there are several ways you can bolster your supply chain:

  • Equivalents:Specifying equivalent passive components is a sound way to keep your supply chain moving. When a specific passive component isn’t available, an equivalent may be available that functions in exactly the same way.
  • Ditch outdated components:Outdated components have limited or no manufacturing output when discontinued. Upgrading to modern components that are manufactured in larger quantities can help you meet demand.
  • Partner with a global distributor:Global components distributors like us source and deliver day-to-day, shortage, hard-to-find and obsolete electronic components. We can help keep your supply chain moving in uncertain times. Contact us today SALES@CYCLOPS-ELECTRONICS.COM
Categories
Electronic Components

Communications including 5G will drive the components market

Communications including 5G will drive the components market

According to IC Insights, the communication sector’s share of integrated circuit sales reached 35% in 2020 and is expected to grow to 36.5% by 2025. For perspective, the automotive sector’s share of integrated circuit sales was 7.5% in 2020 and will grow to 9.8% by 2025 – significantly less than communications.

Industry tailwinds

What’s driving such high demand for ICs in the communications sector?

There are four big tailwinds:

  • 5G
  • Edge computing
  • Internet of Things
  • AI (artificial intelligence), MI (machine learning) and data analytics

5G

5G is the main driver for components demand, with 5G infrastructure rollout happening slowly, but surely. We are nowhere near a complete version of 5G, and networks are in a race against time to deliver a reliable service.

The first step for networks is replacing low-band 4G spectrum, followed by mid-band spectrum that uses 2.5, 3.5 and 4.5 GHz, enabling faster data speeds. The final step is the rollout of millimetre wave, which enables true 5G speeds. Millimetre wave also happens to be a precursor for next-generation 6G.

On top of 5G infrastructure rollout you have more 5G-enabled devices coming to market, such as smartphones, tablets and laptops. Smartphones, in particular, are leading the way for 5G adoption, putting faster data in our hands.

The rapid growth in IC demand in the communications sector also stretches to other components like modems, memory and antennas. 5G isn’t just an IC boon – it’s a boon for all the electronic components needed for 5G. 

Edge computing

Second to 5G we have edge computing, which by a miraculous twist of fate is needed to deliver a 5G experience (and needs a whole lot of components).

Edge computing puts compute capabilities relatively close to end users and/or IoT endpoints. In doing so, it reduces latency, while 5G delivers faster data speeds, providing a seamless experience on certain devices.

Internet of Things

IoT describes a network of connected smart devices that communicate with each other. For example, a vital sign monitor in a hospital could communicate with medicine dispensers and automate medicine dosages for doctors.

The Internet of Things has been talked about as a trend for several years, but we now have real applications that are useful.

AI (artificial intelligence), MI (machine learning) and data analytics

AI (artificial intelligence), MI (machine learning) and data analytics require enormous, powerful data centres to power them. These data centres require significant investment in chips, memory and other electronic components.

Also, AI, MI and data analytics need cloud computing, edge computing and in some cases 5G to deliver a real-time experience.

The future

By 2025, the communications sector is forecast to have a 36.5% usage share of integrated circuits, making it the biggest consumer of semiconductors.

Demand for integrated circuits, discrete circuits, optoelectronics and sensors will grow to an all-time highs thanks to the industry tailwinds in this article. The future is bright, but to stay ahead, a robust supply chain will be needed.

Electronic components distributors like Cyclops are helping supply meet demand, while the communications sector battles to secure chip orders. Call us today at +44 (0) 01904 415 415 or email sales@cyclops-electronics.com 

Categories
Electronic Components

Automotive electronics market set to grow

With vehicles getting smarter, more connected and more autonomous, the automotive electronics market looks set to soar.

Future growth in numbers

Back in March, Precedence Research predicted the automotive electronics market would hit around US$ 640.56 billion by 2030.

Then, in July, Global Market Insights released research predicting the automotive electronics market would hit around US$ 380 billion by 2027.

Interestingly, measured across the same period, both research reports (which are independent) predict a similar growth pattern. Global Market Insights predicts a 6% CAGR, while Precedence Research predicts a CAGR of 7.64% over a 3-year longer period.

With two separate reports indicating significant annual growth, the automotive electronics market looks set to boom. But wait, there’s more.

A 9.3% CAGR is expected in the automotive electronics market by 2030, according to research by P&S Intelligence. They predict slightly less growth than Precedence Research to 2030, at US$ 615.3 billion (versus $640.56 billion).

Growth factors

There are approximately 1,400 chips in a typical vehicle today, which each chip housing thousands of components on a semiconductor wafer, creating the integrated circuits that power computing, memory and a host of other tasks.

Those are just the chips.

Cars have thousands of other electronic components, including passive, active and  interconnecting electronic components, from batteries, sensors and motors, to displays and cameras. Oh, and everything is connected.

All told, a typical car today has more than 50,000 electronic components that enable features like in-car Wi-Fi, self-parking technology, adaptive headlights, semi-autonomous driving technology, keyless entry and powered tailgates.

However, cars are getter smarter and more advanced. Electronic components today make up around a third the cost of a car, which will increase over time as more sophisticated and greater numbers of components are used.

Smarter cars need more components  

The future of cars involves electrification, autonomous and self-driving technologies, hyperconnectivity, Internet of Things, augmented reality, artificial intelligence, biometrics and a whole host of next-generation technologies.

How will these be enabled? With electronic components.

Let’s take electrification as an example. An electric car handbook will tell you an electric car has a motor, a battery, an on-board charger, and an Electronic Control Unit (ECU) that controls one or more of the electrical systems or subsystems in the vehicle. Together, these let you drive around, charge, and pop to the shops.

In-between these systems, are hundreds of thousands of electronic components that make them work. You see, an Electronic Control Unit is a single component, containing thousands of smaller components, each performing a critical role.

The automotive electronics market is set to soar because cars and other vehicles will need more components with electrification and next-gen technologies. Sometimes, things can be simple to explain, and this is one of those times.

Meeting demand

The electronics industry is facing a global chip and electronic component shortage which is expected to last 2-3 years. As demand for automotive electronics soars, shortages look very likely for certain components like CPUs and memory.

The solution for many companies will be to use an electronics component distributor, to fill gaps in the supply chain and keep things moving.

Electronic component distributors like Cyclops can source hard-to-procure components because we have relationships with the best suppliers in the industry. Contact us today with your enquiries at sales@cyclops-elecronics.com or call 01904 415 415.