Categories
Electronic Components

Is it possible to make compostable PCBs?

Decades ago we wouldn’t have thought it possible to create printed circuit boards (PCBs). Now, in 2023, we’re discussing the possibility of biodegradable ones.

A research group from the Johannes Kepler University in Austria developed the biodegradable base for the PCBs. The mix consists of beech wood shavings, organise full-grain spelt flour, fine plaster (CaSO4) dust and beech wood-based inoculum.

After storing the mixture in a flat plastic box in a cupboard for a few weeks a tissue grew. The fungal fibres, called mycelium, formed a kind of soft white skin, similar to paper.

A layer of copper or gold is then vapour-deposited onto the mycelium ‘skin’. Then, a laser will cut away the metal where it’s not needed.

A ‘grow-your-own’ circuit

Storing something in a cupboard for a few weeks has significantly lower production costs than regular PCBs. It also bypasses the need for chemicals and minerals that are hazardous to the environment.

With the use of these, too, there is no need to create specialist manufacturing equipment, unlike with biopolymers. They are made from renewable raw materials like starch or milk protein, but have to use an industrial composting plant that operates at a high temperature.

These ‘skins’ can then be mounted with electronic components like a regular PCB.

The mycelium has a very strong structural integrity, while it remains thin and flexible. It has so far been able to withstand about 2,000 bending cycles, it only shows moderate resistance when folded, can insulate electrical currents and can sustain temperatures that reach 250⁰C.

Early days

So far the concept can only be used in simple electronic devices. A multi-layer circuit or more complex electronics are slightly further in the future. Even at this early development stage, though, a prototype has already been attached to a moisture sensor, a Bluetooth chip that sends the sensor signal to a laptop or smartphone, and a special battery.

In the future it is hoped that production of a smoother mycelial skin through a refined formula could increase the possibilities. It could lead to multi-layer PCBs with smaller components.

Once the circuit has been used, it can be unsoldered and put in the compost. The metal used I the conductor paths will be a biproduct left in the soil, but will be nano-particles in unharmful quantities.

Looking for a fun-guy?

Whether you’re ‘growing’ or manufacturing your PCBs, Cyclops has the electronic components for you. We specialise in obsolete, hard-to-find and day-to-day electronic components, and can source components from trusted sources globally. Contact us today to see what Cyclops can do for you on sales@cyclops-electronics.com, or call +44 (0) 1904 415 415.

 

Categories
Component Shortage COVID-19 Electronic Components Electronica Supply Chain

Cyclops Electronics – Looking back on 2022

Cyclops Electronics has had a monumental year. With a hugely successful Electronica, an exciting business acquisition, and plenty of special team moments to remember. 2022 has made its mark in style.

 

Team wide fun and games

This year we have initiated a weekly delivery of fresh fruit for all of the office to enjoy. It has proved to be a big hit and a great boost of natural goodness into the working day. It’s the perfect antidote to our regular pizza days.

For Stress awareness month in April, we organised picnic lunches for everyone and raffled off a wellness hamper.

At Halloween we stirred up a right cauldron of treats, a quiz curated by a staff member, and a Mummy wrapping game to get everyone in the spooky spirit.

We also celebrated Valentine’s Day, Wimbledon, and most recently the World Cup with full office decoration and goodies on tap. To mark the festive period hot chocolate and mince pies are now a permanent fixture in our kitchen.

Christmas fundraising has been great fun, supporting ‘Save the Children’ with Christmas jumper day and producing a sizeable contribution to a worthy cause.

 

Halfin

In April the Cyclops Group officially announced the acquisition of Belgium-based company Halfin Electronics. Shared values of collaboration, family values and dedicated professionalism made it a natural fit for the Group.

Halfin has enabled Cyclops to add Belgium to its list of international offices, including USA, China, Canada, Italy and Portugal.

The business was established in 1946, and has since built a global clientele and a speciality in vacuum tubes and other niche electronic products. It has been a wonderful addition to the Cyclops family.

Electronica

Electronica was the event of the year for all of us here at Cyclops. A team of nine staff from a range of departments attended the event. Aside from meeting a plethora of new customers, we also caught up with a lot of returning customers. The event was very important to us, since there hasn’t been an in-person Electronica since 2018. We were eager to reconnect with clients and businesses.

Not only did the team make lasting connections with businesses there, but were able to bond as a team and successfully run a trade fair stand. We’re so proud of them for continuing a Cyclops tradition that has been in place for decades.

And finally… 

A few words from our Sales and Marketing Manager, Ros Shaw:

“2022, what a year it has been… looking back at heatwaves, weather extremes, component shortages, supply chain disruption, political turmoil, economic uncertainties and more shortages, it’s been another eventful one. But one constant remains and that is that the Cyclops Team have delivered, day in and day out.

It was a real highlight of our year to chat with many of our appreciative customers at Electronica in Munich. Sharing plans for the New Year, developing strategies for sourcing in 2023 and discussing upcoming projects has enabled us to prepare. And that’s what it’s always been about, preparing and equipping the business to best serve the needs of our customers. Now more than ever we strive to adapt, evolve and innovate to keep stride with this fast-paced world.

We look forward to ranking highly on your ‘most useful’ list this time next year. Thank you for including us in your team. Here’s to 2023 and all of its adventures.”

 

Categories
Electronica

One week until Electronica!

This year one of the largest electronics trade fairs in the world is taking place in Munich, Germany.

Cyclops’s founder has been attending Electronica since it first began, so the convention has always been a highlight of our calendar. We have met many clients and partners through the connections provided to us by Electronica.

The convention is focusing on the promotion of sustainability this year. Bringing the industry together in one location with the aim of “Driving Sustainable Progress”, Electronica hopes to show the role the world that electronics will help, not hinder, sustainability.

The previous Electronica in 2020 was purely virtual, but having hundreds of exhibitors back in Messe München, spread over 13 halls, will be an event to remember.

 In 2018 there were more than 81,000 visitors to the trade fair from 101 countries. 3,124 exhibitors attended the event, we’re hoping for an even more enthusiastic turnout this time around.

In 2021 there was a 9.8% increase in industry revenue from the previous year, at €200 billion, which is astounding progress during the pandemic.

Electronica will have a supporting program full of knowledge and professional talks. During conferences experts will analyse market activity.

The convention has been held every other year since 1964, and has continually grown and evolved over the years.

In the final week leading up to the trade fair, we want to organise meetings with all our clients who are also attending. Whether you are a returning or new customer, we want to show you what Cyclops can do for you.

We have the expertise and drive to go the extra mile for you. Whether you are looking to buy or sell, Cyclops has a solution for you.

Whether you are a returning customer or are completely new to Cyclops, we want to meet you. If you are attending Electronica you can book an appointment with our staff to discuss your needs at Eventbrite now.

Categories
Electronic Components

Price of semiconductor equipment increasing

The price of chip manufacturing is increasing. From skyrocketing raw material prices to continual high demand for semiconductors, it/ is an expensive business right now. Semiconductor manufacturing prices are also on the rise.

Global manufacturers are announcing price hikes to combat the expected rise in inflation, passing the cost onto the customer.

Is reshoring reassuring?

Aside from the supply chain issues and raw material shortages, the drive for reshoring will drive up the cost and demand of semiconductor manufacturing equipment.

In both the US and the UK, new legislation is in the works to provide funding for the electronics industry. It comes alongside a push to reduce reliance on semiconductors sourced from Asia, especially powerhouses like Taiwan and China.

The Chips Acts

In the west’s new legislation, funding and incentives are offered to domestic and international companies looking to build fabs. One such company was TSMC itself, which was rumoured last year to be opening a branch in Germany.

While these grants and investments will go some way to covering the cost of new semiconductor manufacturing equipment, it will only be part of the massive price manufacturers pay.

A new challenger

This may not be the only international development affecting the price increases of semiconductor equipment. New competitors are throwing their proverbial hat in the semiconductor manufacturing ring. One of the countries that is beginning to manufacture more is India.

As the US and Europe are already heavy-hitters in the industry, India will have to make hefty investments into manufacturing. Bulk-buying machinery and technology for facilities will mean more demand, and distributors putting on a bigger price tag. Taiwanese manufacturer Foxconn announced it would be setting up a fab in the country.

Other costs

The cost of making the semiconductor manufacturing equipment also comes into play. As companies are persuaded to move west, the cost of their manufacturing will increase. Many companies based in the east have access to cheaper labour but European and US labour costs will be higher.

Outside of Asia, in areas that are reshoring, there will also be the struggle of finding highly qualified employees. Since there was no need for skilled individuals when there were no fabs, there is a gap in the industry. It will take some time to catch up with industry standards of education.

Kit up

As the chip shortages continue, there’s no guarantee when the cost increase of semiconductor manufacturing equipment might slow down. As with all things, we’ll have to wait and see.

Categories
Electronic Components Semiconductor Supply Chain Technology

PCB assembly

Circuit boards, Assemble!

We’re not quite the Avengers, but we do know a thing or two about assembly.

As an electronic component supplier, Cyclops works to get customers the electronic components they are looking for. Further down the line, manufacturers construct the printed circuit boards (PCBs) featuring our sourced components.

The assembly of a PCB is a delicate and painstaking process. Just one millimetre of misalignment could mean failure of the whole board. Here’s a brief run-down of what’s involved.

Applying solder paste

The first step in the assembly of a PCB is applying a layer of solder paste. The PCB is overlayed with a stencil, and the solder paste is applied over this. The right amount must be used, as this is spread evenly across the openings on the board.

After the stencil and applicator are removed the PCB will be left and moves on to stage two.

Pick and place

The automated placement of the surface mount devices (SMDs) is done by a ‘pick and place’ robot.

The pick and place machine will have a file containing all of the coordinates for the PCB’s components. Every component will have its X and Y coordinates and its orientation included. This information enables the robot to place components on the layer of solder on top of the PCB accurately.

Reflow soldering

From the pick and place machine, the PCBs are directly transferred to a 250⁰ oven, where the solder paste melts and secures the electronic components to the board. Immediately after this, the boards are moved into a cooler to harden the solder joints.

The alternative to reflow soldering is a process called wave soldering. Much like the name suggests, in this method a ‘wave’ of solder moves across the board instead of being pasted on to start with.

Inspection

Once the reflow solder is cooled the PCBs are checked. If anything became misaligned or any solder or components are in the incorrect position, this inspection mitigates the risk to the customer.

When it comes to inspection methods, there are a few options:

Manual inspection – The most basic form of inspection, done with the naked eye. Better for PCBs with through hole technology (THT) and larger components.

Optical inspection – Using high resolution cameras, machines can check large batches of boards for accuracy at a high speed.

X-ray inspection – Give technicians the ability to check inner layers of multi-layer PCBs. This inspection method is usually reserved for more complex boards.

What a Marvel!

Cyclops Electronics can supply obsolete, day to day, and hard to find components to PCB manufacturers. We can source components efficiently to keep your production line running. Contact us today at sales@cyclops-electronics.com, or use the rapid enquiry form on our website.

Categories
Active Components Electronic Components Semiconductor Technology

Thermal management of semiconductors

Too hot to handle

Every electronic device or circuit will create heat when in use, and it’s important to manage this. If the thermal output isn’t carefully controlled it can end up damaging, or even destroying the circuit.

This is especially an issue in the area of power electronics, where circuits reaching high temperatures are inevitable.

Passive thermal dissipation can only do so much. Devices called heat sinks can be used in circuits to safely and efficiently dissipate the heat created. Fans or air and water-cooling devices can be used also.

Feelin’ hot, hot, hot!

Using thermistors can help reliably track the temperature limits of components. When used correctly, they can also trigger a cooling device at a designated temperature.

When it comes to choosing a thermistor, there is the choice between negative temperature coefficient (NTC) thermistors, and positive temperature coefficient (PTC) thermistors. PTCs are the most suitable, as their resistance will increase as the temperature does.

Thermistors can be connected in a series and can monitor several potential hotspots simultaneously. If a specified temperature is reached or exceeded, the circuit will switch into a high ohmic state.

I got the power!

Power electronics can suffer from mechanical damage and different components can have different coefficients of thermal expansion (CTE). If components like these are stacked and expand at different rates, the solder joints can get damaged.

After enough temperature changes, caused by thermal cycling, degradation will start to be visible.

If there are only short bursts of power applied, there will be more thermal damage in the wiring. The wire will expand and contract with the temperature, and since both ends of the wire are fixed in place this will eventually cause them to detach.

The heat is on

So we’ve established that temperature changes can cause some pretty severe damage, but how do we stop them? Well, you can’t really, but you can use components like heat sinks to dissipate the heat more efficiently.

Heat sinks work by effectively taking the heat away from critical components and spreading it across a larger surface area. They usually contain lots of strips of metal, called fins, which help to distribute heat. Some even utilise a fan or cooling fluid to cool the components at a quicker speed.

The disadvantage to using heat sinks is the amount of space they need. If you are trying to keep a circuit small, adding a heat sink will compromise this. To reduce the risk of this as much as possible,  identify the temperature limits of devices and choose the size of heat sink accordingly.

Most designers should provide the temperature limits of devices, so hopefully matching them to a heat sink will be easy.

Hot ‘n’ cold

When putting together a circuit or device, the temperature limits should be identified, and measures put in place to avoid unnecessary damage.

Heat sinks may not be the best choice for everyone, so make sure to examine your options carefully. There are also options like fan or liquid-based cooling systems.

Cyclops Electronics can supply both electronic components and the heat sinks to protect them. If you’re looking for everyday or obsolete components, contact Cyclops today and see what we can do for you.

Categories
Active Components Electronic Components Passive Components Semiconductor

Superconductivity

Superconductivity is the absence of any electrical resistance of some materials at specific low temperatures. As a starting point this is pretty vague, so let’s define it a bit more clearly.

The benefits of a superconductor is that it can sustain a current indefinitely, without the drawback of resistance. This means it won’t lose any energy over time, as long as the material stays in a superconducting state.

Uses

Superconductors are used in some magnetic devices, like medical imaging devices and energy-storage systems. They can also be used in motors, generators and transformers, or devices for measuring magnetic fields, voltages, or currents.

The low power dissipation, high-speed operation and high sensitivity make superconductors an attractive prospect. However, due to the cool temperatures required to keep the material in a superconducting state, it’s not widely utilised.

Effect of temperature

The most common temperature that triggers the superconductor effect is -253⁰C (20 Kelvin). High-temperature superconductors also exist and have a transition temperature of around -193⁰C (80K).

This so-called transition temperature is not easily achieved under normal circumstances, hence why you don’t hear about superconductors that often. Currently superconductors are mostly used in industrial applications so they can be kept at low temperatures more efficiently.

Type I and Type II

You can sort superconductors into two types depending on their magnetic behaviour. Type I materials are only in their superconducting state until a threshold is reached, at which point they will no longer be superconducting.

Type II superconducting materials have two critical magnetic fields. After the first critical magnetic field the superconductor moves into a ‘mixed state’. In this state some of the superconductor reverts to normal conducting behaviour, which takes pressure off another part of the material and allows it to continue as a superconductor. At some point the material will hit its second critical magnetic field, and the entire material will revert to regular conducting behaviour.

This mixed state of type II superconductors has made it possible to develop magnets for use in high magnetic fields, like in particle accelerators.

The materials

There are 27 metal-based elements that are superconductors in their usual crystallographic forms at low temperatures and low atmospheric pressure. These include well-known materials such as aluminium, tin and lead.

Another 11 elements that are metals, semimetals or semiconductors can also be superconductors at low temperatures but high atmospheric pressure. There are also elements that are not usually superconducting, but can be made to be if prepared in a highly disordered form.

Categories
Electronic Components Future Technology

What is Raspberry Pi

If you work in the electronics industry you might have heard of the Raspberry Pi circuit board. This device is a single-board computer, originally made by the UK-based Raspberry Pi Foundation.

Raspberry Pi boards use Linux and have a set of general purpose input/output (GPIO) pins. This means the user can attach electronic components and create different circuit boards.

History

The Raspberry Pi Foundation is a charity focused on teaching computing, and aims to make the subject simple and fun. To this end, The Raspberry Pi single-board computer was released to aid students and teachers in learning electronics affordably.

The original Pi was released in 2012 and quickly became popular, not only for education but in multiple industries. Since it uses a Linux-based OS it was also used by programmers and developers.

Raspberry Pi 1 Model B had a single-core 700MHz CPU, an ARM1176JZF-S processor, a VideoCore IV GPU, and had 512MB of RAM, and sold at lower than $35 on its release in April 2012.

Components

Since 2012 there have been several generations of Raspberry Pi. The latest model can have up to 8GB of RAM and a 64-Bit quad-core processor. Additionally, the Raspberry Pi 4 has two micro-HDMI ports that support 4K at 60GHz displays, a MIPI DSI (display serial interface) display port, MIPI CSI (camera serial interface) camera port, 4 pole stereo output and composite video port.

Potential Uses

One of the attractions of the Raspberry Pi device is the 40-pin GPIO header and four USB ports. This gives the opportunity for users to connect and build various types of circuits using external components.

Pi comes with an official operating system named Raspbian OS. The OS has a GUI that can be used for browsing, programming, games, and other applications.

Batteries or solar panels can be connected to power the circuit, which at peak would only require 7.6W of power. A power supply can also be connected via the USB port. One such power supply is provided by the Raspberry Pi Foundation itself at 5.1V.

Microphones and buzzers can be connected via the GPIO pins to create simple circuits. Motion sensors, servos and more, can also be attached in any combination.

There are numerous entertaining projects to undertake for those interested, and for the people who need it there is plenty of inspiration available online.

Pi’nally…

Cyclops Electronics can supply Raspberry Pi products, customers need only get in touch! For this, and all your other electronic component needs, contact Cyclops today.

Categories
Component Testing Electronic Components Semiconductor Technology

RoHS, REACH, and dangerous substance legislation

RoHS and REACH are two pieces of legislation referring to the control of dangerous substances and chemicals. Companies manufacturing and distributing electronic equipment in Europe must comply to be able to trade.

RoHS

The Restriction of Hazardous Substances (RoHS) Directive came into force in 2004. With an aim to mitigate the effect of dangerous substances on customers, the Directive restricts the concentration of 10 substances used in Electrical and Electronic Equipment (EEE).

Acceptable levels of restricted substances in a single material are generally less than 0.1% or 1000 parts per million (ppm). For the chemical Cadmium, however, levels must be no more than 0.01% or 100ppm.

Companies must provide proof that they comply with the regulations by way of documentation. This includes a Declaration of Conformity, a record of the assessment procedure for conformity, and any other control documentation.

Since its release in ’04, there have been 3 iterations, with the latest being introduced in July of 2019. RoHS 3.0 introduces 11 new category products and four new substances.

The materials listed include products that could be harmful to not only human health, but the environment too. As such, non-compliance carries with it the potential for a heavy fine.

RoHS certification takes place in several steps:

  1. Extraction testing of the components takes place to determine the value of the RoHS substances contained.
  2. On-site manufacturing processes are inspected to ensure RoHS compliance at the facility.
  3. Review all relevant documentation, including the BOM (Bill of Materials), assembly drawings, and test reports from suppliers.
  4. Following this, if all is in order a RoHS Certificate of Compliance is issued.

REACH

REACH stands for the Registration, Evaluation, Authorisation and Restriction of Chemicals. It was introduced a few years on from RoHS, in 2006.

The scope of REACH is more inclusive than RoHS. It encompasses almost all products manufactured, imported, or sold in the EU or UK.

REACH revolves more around Substances of Very High Concern (SVCH), which includes those considered carcinogenic, mutagenic or toxic for reproduction.

Manufacturers and importers need to register the quantities of substances produced every year. Companies need to safely manage and publicise the risks associated with the substances. They’re also responsible for tracking and managing which substances are being used, and produce safety guidelines for each.

Recent changes

Due to events like Brexit in the UK, RoHS and REACH regulations became transplanted into UK law. Since many substances are imported between mainland Europe and the UK, the legislation in both remained very similar.

As part of the European Union (Withdrawal) Act 2018, REACH was copied into UK legislation, becoming UK REACH in 2021. Although the difference is seemingly in name alone, the two REACHs operate separately, and manufacturers need to comply with both.

REACH for the stars!

Cyclops can supply products that are RoHS and REACH compliant and can provide this information to our customers. This means Cyclops customers can guarantee if they want RoHS compliant parts, they will receive them. So contact Cyclops Electronics today!

This blog post is designed to be informative and is in no way offering advice or guidance on how to interpret legislation.

Categories
Electronic Components Future Technology

Could conductive ink replace conventional circuitry?

It seems like the stuff of dreams, having a pen or a paintbrush that could conduct electricity. Well, those dreams are very real, readily available to buy online, and at a relatively cheap rate, too.

Conductive ink pens and conductive paint that can be used with a pen, paintbrush, or a printer is a reality, and is already being put to work.

What is it?

Conductive ink and conductive paint are liquid materials mixed with nanoparticles of a conducting material like silver or graphite. The paint and ink are technically slightly different, in that the paint sits on the surface of a substrate, while the ink would sink into a substrate it was applied to, like regular ink on paper.

Although the metals are usually in a solid state at room temperature, if it’s in a nanoparticle form it can be mixed with a liquid. When the liquid is spread and begins to dry, the nanoparticles and electrons within them begin to form conductive chains that the current is then able to travel through.

The inks used normally work at 12V, and can be transparent which means it would be a good choice for companies to integrate it invisibly into their graphics.

Uses

One notable way silver-infused ink is currently used is to print Radio Frequency Identification (RFID) tags in tickets.

Another common place to find conductive paint or ink is in the rear windscreen of cars. The resistive traces applied to windscreens to help defrost them contain conductive paint. Traces printed on the window can also serve as a radio antenna in more recently manufactured cars.

Conductive inks and paints were originally intended to be used for e-textiles and wearables. The potential for clothes that could detect temperature and heart rate, among other features, is an area receiving considerable investment.

Problems

When compared to conventional circuity and conductors, conductive inks and paints will never be able to emulate the strength of conductivity. In a way, it would be unfair to pit the two against each other, like putting boxers from vastly different weight classes in a ring together.

The reliability and connectivity of traditional conductors is much higher so is preferred for regularly used products, however conductive inks and paints would be utilised in areas that traditional means could not. So, as much as these factors are disadvantages they would be irrelevant when it comes to the product.

Layers of the ink or paint may not always be thick enough to have any conductive strength at all, and it could take several layers of it to properly form a current-conducting pathway. Additionally, the user is relying on the nanoparticles in the liquid to align correctly for conduction. The material would work only for smaller direct voltages too, probably up to around 12V.

Silver is a material that has a higher cost than other conductors like graphite, and could make the price of some paints unreasonable for some customers. The low cost alternative is graphite, but this also has a higher resistivity than metals like silver.

The future

As far as development goes, nanoparticle paint is still in its infancy. Its uses are limited and occasionally unreliable, so although it has cornered a niche conductive market it’s unlikely we’ll see it permeating the sector for a while.

If you are looking for trustworthy day-to-day or obsolete electronic components, Cyclops are here for you. Don’t paint yourself into a corner, contact Cyclops today to find what you’re looking for, at sales@cyclops-electronics.com.

en_GBEnglish