Categories
Future

The future of haptic technology

One of the most interesting areas of electronics research right now is into the potential applications of haptic technology.

What is haptic technology?

Anything ‘haptic’ refers to touch. As such, haptic technology encompasses technical devices or innovations that create tactile simulations.

Haptics can be used across a huge variety of products, from the vibrations when you press a button on your smartphone, to life-like human-robot interactions.

There are three main types of technology in haptics: graspable, wearable, and touchable.

Touchable:

One of the most ubiquitous uses of haptics is in the touchable screens of smartphones and tablets. A tactile response is when something responds to touch, so when you touch your smartphone and it vibrates in response.

Graspable:

A good example of the graspable category of haptics would be joysticks used in video gaming. Depending on the pressure and angle exerted on the joysticks, the game responds accordingly. The kinaesthetic feedback from devices like joysticks or game controllers can be felt in more than just our fingertips.

For slightly more serious use-cases, look no further than military bomb disposal units. By using graspable haptics systems, operators can use robots to defuse bombs without putting any people at risk.

Wearable:

These devices usually use pressure, friction or temperature to create a tactile experience. Haptics are used in some smart watches, which can have a tactile response when scrolling or clicking.

Companies working in haptics

There are several labs and research facilities that are making a name for themselves in haptics. A Swiss lab working for the Swiss Federal Institute of Technology (EPFL) has some interesting projects underway. The University of South Carolina also has a Haptics Robotic and Virtual Interaction (HaRVI) lab. Many universities also have research centres dedicated to haptic technology, including Stanford and King’s College London.

There are some big names also researching the utilisation of haptics too. Companies like Disney are researching different ways to use haptic technology, including interactions between humans and robots and haptic jackets.

The future of haptics

There’s so much research being done into the applications of haptic technology, including some things that could be revolutionary. Among other things the University of South Carolina are working on a device called ‘Grabity’, which is trying to add the feeling of weight and gravity to graspable haptics. As you can imagine, it’s difficult to add the perception of a different weight to a graspable device. The way they do this is through the use of voice coil actuators. These electronic components convert electric signals into magnetic force, giving a feeling similar to gravity.

Several labs and companies are also working on haptic soft pneumatic actuator (SPA) skin. This invention could be used in soft robotics, which in turn could be used for an array of life-changing applications. The skin could go onto invasive surgical instruments and rehabilitation devices since it can safely interact with the human body.

Disney’s research division has several haptic projects running, including one for haptic telepresence robots. The robot uses hydraulic and pneumatic lines, combined with a remote person controlling the robot.

So close you can almost touch it

Haptics is a constantly evolving field of research with some really exciting potential developments down the line.

However, something you don’t have to wait for is finding those electronic components you’ve been searching for. Cyclops is on hand to fulfil all your semiconductor requirements, be it new, obsolete or anything in between. Contact us today to find those components you’ve been looking for on +44 (0) 1904 415 415. Alternatively, email us at sales@cyclops-electronics.com

Categories
Electronic Components

Communications including 5G will drive the components market

Communications including 5G will drive the components market

According to IC Insights, the communication sector’s share of integrated circuit sales reached 35% in 2020 and is expected to grow to 36.5% by 2025. For perspective, the automotive sector’s share of integrated circuit sales was 7.5% in 2020 and will grow to 9.8% by 2025 – significantly less than communications.

Industry tailwinds

What’s driving such high demand for ICs in the communications sector?

There are four big tailwinds:

  • 5G
  • Edge computing
  • Internet of Things
  • AI (artificial intelligence), MI (machine learning) and data analytics

5G

5G is the main driver for components demand, with 5G infrastructure rollout happening slowly, but surely. We are nowhere near a complete version of 5G, and networks are in a race against time to deliver a reliable service.

The first step for networks is replacing low-band 4G spectrum, followed by mid-band spectrum that uses 2.5, 3.5 and 4.5 GHz, enabling faster data speeds. The final step is the rollout of millimetre wave, which enables true 5G speeds. Millimetre wave also happens to be a precursor for next-generation 6G.

On top of 5G infrastructure rollout you have more 5G-enabled devices coming to market, such as smartphones, tablets and laptops. Smartphones, in particular, are leading the way for 5G adoption, putting faster data in our hands.

The rapid growth in IC demand in the communications sector also stretches to other components like modems, memory and antennas. 5G isn’t just an IC boon – it’s a boon for all the electronic components needed for 5G. 

Edge computing

Second to 5G we have edge computing, which by a miraculous twist of fate is needed to deliver a 5G experience (and needs a whole lot of components).

Edge computing puts compute capabilities relatively close to end users and/or IoT endpoints. In doing so, it reduces latency, while 5G delivers faster data speeds, providing a seamless experience on certain devices.

Internet of Things

IoT describes a network of connected smart devices that communicate with each other. For example, a vital sign monitor in a hospital could communicate with medicine dispensers and automate medicine dosages for doctors.

The Internet of Things has been talked about as a trend for several years, but we now have real applications that are useful.

AI (artificial intelligence), MI (machine learning) and data analytics

AI (artificial intelligence), MI (machine learning) and data analytics require enormous, powerful data centres to power them. These data centres require significant investment in chips, memory and other electronic components.

Also, AI, MI and data analytics need cloud computing, edge computing and in some cases 5G to deliver a real-time experience.

The future

By 2025, the communications sector is forecast to have a 36.5% usage share of integrated circuits, making it the biggest consumer of semiconductors.

Demand for integrated circuits, discrete circuits, optoelectronics and sensors will grow to an all-time highs thanks to the industry tailwinds in this article. The future is bright, but to stay ahead, a robust supply chain will be needed.

Electronic components distributors like Cyclops are helping supply meet demand, while the communications sector battles to secure chip orders. Call us today at +44 (0) 01904 415 415 or email sales@cyclops-electronics.com