Categories
Electronic Components Future

The future of semiconductor manufacturing, is it digital twins?

What is a digital twin?

The concept of digital twins has been around since the early 90s. Since then, it has been further developed and become a time and money saver for many manufacturers.

The purpose of a digital twin is to mimic a physical system exactly. It gives those using it the ability to simulate what they want to do, and the twin predicts the outcome.

These twins are not to be confused with a simple simulation or a digital thread. A simulation can only replicate the outcome of one process, while digital twins can run multiple simulations for different processes. A digital thread, although similar, is more a record of everything occurring in a product or system over time.

There are several varieties of digital twins, all with different use cases. The purposes range from basic, with component twins, to more complex process twins which can represent an entire production facility.

The timeline

Semiconductors can take around 3 months to manufacture from a silicon wafer to multilayer semiconductors. Not only that, but semiconductor fabs themselves take years, and millions in funding, to build. Because of this, it is hugely time-consuming to open any new facilities and start production there.

The issue that arises, then, is there would be time between demand increasing and when it can be met. Alongside this, any new facility will need trained staff and assurances any new equipment is working.

Digital twins give manufacturers the ability to test the workings of a facility before production begins. This may not seem like a big deal but it means that any mistakes or issues can be detected much earlier, and won’t affect the real production.

Even in a working fab, a digital twin can conceptualise new processes, without interrupting production. Finding working systems before changing the physical process can save time and money too.

And if you need skilled employees? No problem. By combining digital twins with training software or VR, you can train new staff before they touch the real equipment. Employees can then be qualified to work in a facility with no prior experience and no disruptions to production.

Sustainability

An alternative concept is using digital twins to become more environmentally friendly. Users can test ways to cut emissions and energy use to reach sustainable goals. Any problems or errors can be discovered before implementing them in real time. One study found that 57% of organisations agree digital twins are pivotal to improving sustainability.

Something to be mindful of is that it needs to be up-to-date to mirror the conditions of the physical version. This is especially important with system twins and process twins, where several interlocking systems work together.

Advantages

With the huge amounts of data that can be collected through a digital twin, products can be developed much further. Since digital twins offer so much insight into potential outcomes, it can boost a company’s research and development much faster.

Once a product has been developed, a digital twin can monitor the manufacturing process, overall increasing efficiency. Once a product reaches the end of its life a twin can help decide the best outcome for it too.

A safe prediction

Digital twins can simulate processes and products to help manufacturers make assured choices. For those looking for electronic components, Cyclops Electronics is the best choice. We have an extensive stocklist of day-to-day, obsolete and hard-to-find components, and a dedicated sales team to source every component you need. Contact Cyclops at sales@cyclops-electronics.com or call us on +44 (0) 1904 415 415.

 

Image Source: SumitAwinash

Categories
Electronic Components Uncategorized

The inner workings of a flexible screen

Flexible screens that the consumer can fold or roll were once a complex novelty. Now, they are becoming increasingly more commonplace.

More and more phones and electronic devices are offering flexible screens. Only recently were the newest Samsung Galaxy phones released with folding screens. Oppo, LG and other providers are also beginning to offer flexible screens for their devices.

The first phones with curved displays were produced in 2014 when plastic joined glass as a screen substrate option. The flexible plastic could be bent without breaking, and was much more durable than a thin fragile sheet of glass.

Any kind of screen needs to be durable, but the necessity is increased when flexibility and folding is considered. The other layers of the device have to be just as flexible and durable, which is a factor that has led to a much longer development time.

I don’t believe my eyes!

OLED is currently the display of choice on flexible screens, often being chosen over the LCD alternative. Unlike the backlit LCD screen, the pixels themselves are what emit light in OLED. Thanks to this OLED screens can be much thinner and lighter.

Aside from the cover layer, the glass or plastic layer we interact with, and the OLED, there are two other layers in a flexible touchscreen device:

The substrate layer, which is the bottom layer of the screen, supports the layers that follow. This is usually made of plastic or metal. The most common substrate used for flexible devices is polymide, which has a high mechanical strength and thermal stability. This is also usually used for the cover layer as well.

Powered pixels

The thin film transistor (TFT) layer is between the substrate and the OLED layer. It controls the power delivery to each pixel individually, allowing for high contrast rates and lower power consumption.

Within the TFT layer itself there are also several components that go into its construction. The first layer is glass, metals and polymers and is only microns thick.

Next, there is a gate electrode made of aluminium, gold or chromium. The gate electrode provides a signal to the TFT which begins the contact between the source and drain.

The third layer, an insulator, is used to stop electrical shorting in between the two layers. After that there is another electrode layer and is deposited over the semiconducting surfaces.

Welcome to the fold

As a specialist in day-to-day and obsolete electronic components, Cyclops Electronics can help you source the components you’re looking for. With an extensive stocklist and a dedicated team of account managers, we can guarantee to go above and beyond our competitors. Contact Cyclops today to see what we can do for you on sales@cyclops-electronics.com, or call +44 (0) 1904 415 415.

Categories
Electronic Components

Is it possible to make compostable PCBs?

Decades ago we wouldn’t have thought it possible to create printed circuit boards (PCBs). Now, in 2023, we’re discussing the possibility of biodegradable ones.

A research group from the Johannes Kepler University in Austria developed the biodegradable base for the PCBs. The mix consists of beech wood shavings, organise full-grain spelt flour, fine plaster (CaSO4) dust and beech wood-based inoculum.

After storing the mixture in a flat plastic box in a cupboard for a few weeks a tissue grew. The fungal fibres, called mycelium, formed a kind of soft white skin, similar to paper.

A layer of copper or gold is then vapour-deposited onto the mycelium ‘skin’. Then, a laser will cut away the metal where it’s not needed.

A ‘grow-your-own’ circuit

Storing something in a cupboard for a few weeks has significantly lower production costs than regular PCBs. It also bypasses the need for chemicals and minerals that are hazardous to the environment.

With the use of these, too, there is no need to create specialist manufacturing equipment, unlike with biopolymers. They are made from renewable raw materials like starch or milk protein, but have to use an industrial composting plant that operates at a high temperature.

These ‘skins’ can then be mounted with electronic components like a regular PCB.

The mycelium has a very strong structural integrity, while it remains thin and flexible. It has so far been able to withstand about 2,000 bending cycles, it only shows moderate resistance when folded, can insulate electrical currents and can sustain temperatures that reach 250⁰C.

Early days

So far the concept can only be used in simple electronic devices. A multi-layer circuit or more complex electronics are slightly further in the future. Even at this early development stage, though, a prototype has already been attached to a moisture sensor, a Bluetooth chip that sends the sensor signal to a laptop or smartphone, and a special battery.

In the future it is hoped that production of a smoother mycelial skin through a refined formula could increase the possibilities. It could lead to multi-layer PCBs with smaller components.

Once the circuit has been used, it can be unsoldered and put in the compost. The metal used I the conductor paths will be a biproduct left in the soil, but will be nano-particles in unharmful quantities.

Looking for a fun-guy?

Whether you’re ‘growing’ or manufacturing your PCBs, Cyclops has the electronic components for you. We specialise in obsolete, hard-to-find and day-to-day electronic components, and can source components from trusted sources globally. Contact us today to see what Cyclops can do for you on sales@cyclops-electronics.com, or call +44 (0) 1904 415 415.

 

Categories
Electronic Components Uncategorized

Improvements to smart materials in the works

A team of scientists and engineers has developed a new way of producing thin film perovskite semiconductors.

This ‘smart material’ can adapt depending on stimuli like light, magnetic fields or electric fields.

This could lead to the material being combined with other nano-scale materials to produce sensors, smart textiles and flexible electronics.

Thin films are usually made via epitaxy: atoms are placed on a substrate one layer at a time.

However, with this method the films stay attached to the host substrate and are less easily utilised. If it can be separated from the substrate it is much more useful.

The team, based at the University of Minnesota, has found a way to create a strontium titanate membrane without several of the usual freestanding membrane issues.

Making freestanding ‘smart’ oxide material membranes comes with certain challenges. Unlike 2D substances like graphene, smart oxide materials are bonded in 3 dimensions.

The method

One way to make them is using remote epitaxy. Graphene is used as an intermediary between the substrate and the membrane. This allows the thin film material to be peeled off the substrate. One issue with this is when using the technique with metal oxides the graphene becomes oxidised and ruins the sample.

A new technique pioneered by the University of Minnesota is hybrid molecular beam epitaxy. This stops the oxidation process by using titanium that is already bonded to oxygen. The team has also been able to introduce automatic stoichiometric control, which no one else has been able to do.

The hope is in future to combine these thin film membranes to create more advanced smart materials. There are certain products already using thin films like gallium-oxide. Other alternatives to thin film include carbon nanotubes, which can be used in layers of only 0.06nm thickness.

A ‘smart’ choice

Cyclops Electronics can provide a huge range of specialist, day-to-day, and hard to find electronic components. We work with our customers to make sure we find what they need and deliver in the quickest time possible.

Contact Cyclops for all your electronic component needs. Call us on +44 (0) 1904 415 415, or email us at sales@cyclops-electronics.com.