Categories
Electronic Components Technology

The History of Transistors

Transistors are a vital, ubiquitous electronic component. Their main function is to switch or amplify the electrical current in a circuit, and a modern device like a smartphone can contain between 2 and 4 billion transistors.

So that’s some modern context, but have you ever wondered when the transistor was invented? Or what it looked like?

Pre-transistor technology

Going way back to when Ohm’s Law was first discovered in 1820s, people had been aware of circuits and the flow of current. As an extension of this, there was an awareness of conductors.

Following on from this, semiconductors accompanied the birth of the AC-DC (alternating current – direct current) conversion device, the rectifier, in 1874.

Two patents were filed in the 20s and 30s for devices that would have been transistors if they had ever reached past the theoretical stage. In 1925 Julius Lilienfeld of Austria-Hungary filed a patent, but did not end up releasing any papers regarding his research on the field-effect transistor, and so his discoveries were ignored.

Again, in 1934 German physicist Oskar Heil’s patent was on a device that, by applying an electrical field, could control the current in a circuit. With only theoretical ideas, this also did not become the first field effect transistor.

The invention of transistors

The official invention of a working transistor was in 1947, and the device was announced a year later in 1948. The inventors were three physicists working at Bell Telephone Laboratories in New Jersey, USA. William Shockley, John Bardeen and Walter Brattain were part of a semiconductor research subgroup working out of the labs.

One of the first attempts they made at a transistor was Shockley’s semiconductor triode, which was made up of three electrodes, an emitter, a collector and a large low-resistance contact placed on a block of germanium. However, the semiconductor surface trapped electrons, which blocked the main channel from the effect of the external field.

Despite this initial idea not working out, the issue was solved in 1946. After spending some time looking into three-layer structures featuring a reversed and forward-biased junction, they returned to their project on field-effect devices in a year later in 1947. At the end of that year, they found that with two very close contact junctions, with one forward biased and one reverse biased, there would be a slight gain.

The first working transistor featured a strip of gold over a triangle of plastic, finely cut with a razor at the tip to create two contact points with a hair’s breadth between them and placed on top of a block of germanium.

The device was announced in June of 1948 as the transistor – a mix of the words ‘transconductance’, ‘transfer’ and ‘varistor’.

The French connection

At the same time over the water in France, two German physicists working for Compagnie des Freins et Signaux were at a similar stage in the development of a point contact device, which they went on to call the ‘transistron’ when it was released.  

Herbert Mataré and Heinrich Welker released the transistron a few months after the Bell Labs transistor was announced but was engineered completely without influence by their American counterpart due to the secrecy around the Bell project.

Where we are now

The first germanium transistors were used in computers as a replacement for their predecessor vacuum tubes, and transistor car radios were produced all within only six years of its invention.

The first transistor was made with germanium, but since the material can’t withstand heats of more than 180˚F (82.2˚C), in 1954 Bell Labs switched to silicon. Later that year Texas Instruments began mass-producing silicon transistors.

First silicon transistor made in 1954 by Bell Labs, then Texas Instruments made first commercial mass produced silicon transistor the same year. Six years later in 1960 the first in the direct bloodline of modern transistors was made, again by Bell Labs – the metal-oxide-semiconductor field-effect Transistor (MOSFET).

Between then and now, most transistor technology has been based on the MOSFET, with the size shrinking from 40 micrometres when they were first invented, to the current average being about 14 nanometres.

The latest in transistor technology is called the RibbonFET. The technology was announced by Intel in 2021, and is a transistor whose gate surrounds the channel. The tech is due to come into use in 2024 when Intel change from nanometres to, the even smaller measuring unit, Angstrom.

There is also other tech that is being developed as the years march on, including research into the use of 2D materials like graphene.

If you’re looking for electronic components, Cyclops are here to help. Contact us at sales@cylops-electronics.com to order hard-to-find or obsolete electronic components. You can also use the rapid enquiry form on our website https://www.cyclops-electronics.com/

Categories
Component Shortage Electronic Components Future Supply Chain Technology

Ukraine – Russia conflict may increase global electronics shortage

Due to conflict between Russia and Ukraine, both of whom produce essential products for chip fabrication, the electronic component shortage across the globe may worsen.

Ukraine produces approximately half of the global supply of neon gas, which is used in the photolithography process of chip production. Russia is responsible for about 44% of all palladium, which is implemented in the chip plating process.

The two leading Ukrainian suppliers of neon, Ingas and Cryoin, have stopped production in Moscow and said they would be unable to fill orders until the fighting had stopped.

Ingas has customers in Taiwan, Korea, the US and Germany. The headquarters of the company are based in Mariupol, which has been a conflict zone since late February. According to Reuters the marketing officer for Ingas was unable to contact them due to lack of internet or phone connection in the city.

Cryoin said it had been shut since February 24th to keep its staff safe, and would be unable to fulfil March orders. The company said it would only be able to stay afloat for three months if the plant stayed closed, and would be even less likely to survive financially if any equipment or facilities were damaged.

Many manufacturers fear that neon gas, a by-product of Russian steel manufacturing, will see a price spike in the coming months. In 2014 during the annexing of Crimea, the price of neon rose by 600%.

Larger chip fabricators will no doubt see smaller losses due to their stockpiling and buying power, while smaller companies are more likely to suffer as a result of the material shortage.

It is further predicted that shipping costs will rise due to an increase in closed borders and sanctions, and there will be a rise in crude oil and auto fuel prices.

The losses could be mitigated in part by providing alternatives for neon and palladium, some of which can be produced by the UK or the USA. Gases with a chlorine or fluoride base could be used in place of neon, while palladium can be sourced from some countries in the west.

Neon could also be supplied by China, but the shortages mean that the prices are rising quickly and could be inaccessible to many smaller manufacturers.

Neon consumption worldwide for chip production was around 540 metric tons last year, and if companies began neon production now it would take between nine months and two years to reach steady levels.

Categories
Electronic Components Future Technology

What is the Internet of Things?

EveryThing

In terms of IoT, a ‘Thing’ is anything that can transfer data over a network and can have its own IP address. They are most often ‘smart’ devices, that use processors or sensors to accumulate and send data.

These devices have little-to-no need for human interaction, except in cases where the smart device is controlled by a remote control or something similar. Due to the low cost of electronic components and wireless networks being readily available, it’s possible for most things to become, well, Things.

Technically, larger items like computers, aeroplanes, and even phones, cannot be considered IoT devices, but normally contain a huge amount of the smart devices within them. Smaller devices, however, like wearable devices, smart meters and smart lightbulbs can all be counted as IoT items.

There are already more connected IoT devices than there are people in the world, and as more Things are produced this progress shows no sign of slowing.

Applications of IoT

The automation and smart learning of IoT devices has endless uses and can be implemented in many industries. The medical industry can use IoT to remotely monitor patients using smart devices that can track blood pressure, heart rate and glucose levels, and can check if patients are sticking to treatment plans or physiotherapy routines.

Smart farming has garnered attention in recent years for its possibly life-saving applications. The use of IoT devices in the agricultural industry can enable the monitoring of moisture levels, fertiliser quantities and soil analysis. Not only would these functions lower the labour costs for farmers substantially but could also be implemented in countries where there is a desperate need for agriculture.

The industrial and automotive industries also stand to benefit from the development of IoT. Road safety can be improved with fast data transfer of vehicle health, as well as location. Maintenance could be performed before issues begin to affect driving if data is collected and, alongside the implementation of AI, smart vehicles and autonomous cars could be able to drive, brake and park without human error.

What’s next?

The scope of possibilities for IoT will only grow as technology and electronics become more and more accessible. An even greater number of devices will become ‘smart’ and alongside the implementation of AI, we will likely have the opportunity to make our lives fully automated. We already have smart toothbrushes and smart lightbulbs, what more could be possible in the future?

To make it sustainable and cost-effective, greater measures in security and device standardisation need to be implemented to reduce the risk of hacking. The UK government released guidelines in 2018 on how to keep your IoT devices secure, and a further bill to improve cyber security entered into law in 2021.

If you’re looking for chips, processors, sensors, or any other electronic component, get in touch with Cyclops Electronics today. We are specialists in day-to-day and obsolete components and can supply you where other stockists cannot.

Contact Cyclops today at sales@cyclops-electronics.com. Or use the rapid enquiry form on our website to get fast results.

Categories
Electronic Components Future Supply Chain Technology

Could Graphene be used in semiconductors?

A new discovery

Graphene was first isolated at the University of Manchester in 2004. Professors Andre Geim and Kostya Novoselov were experimenting on a Friday night (as you do) and found they could create very thin flakes of graphite using sticky tape. When separating these fragments further, they found they could produce flakes that were one atom thick.

Geim and Novoselov were awarded the Nobel Prize in Physics for their ground-breaking experiments in 2010, and since the two had first identified the material since the 60s it had been a long time coming.

Despite its thinness Graphene is extremely strong, estimated to be 200 times stronger than steel

Is silicon outdated?

Semiconductors are inextricably linked to Moore’s Law, which is the principle that the number of transistors on a microchip doubles every year. But that observation Intel co-founder Gordon Moore made in 1965 is now losing speed.

Silicon chips will very soon reach their limit and will be unable to hold any additional transistors, which means that future innovation will require a replacement material. Graphene, with its single-atom thickness, is a contender.

In 2014 hardware company IBM devoted $3 billion to researching replacements for silicon as it believed the material would become obsolete. The company said as chips and transistors get smaller, as small as the current average of 7 nanometers (nm), the integrity of silicon is more at risk.

IBM revealed its new 2nm tech last year, which can hold 50 billion transistors on a single silicon chip, so the material is not going obsolete just yet.

Disadvantages

Graphene is nowhere close to being a replacement for silicon, it is still in the development stage and the cost of implementing it into supply chain would be extensive. A lot more research and adjustment is required, and it would have to be introduced step by step to avoid prices skyrocketing and supply chains breaking down.

Graphene is not the only contender to be the replacement for silicon either. Carbon nanotubes are fighting for prominence, and other 2D materials like molybdenum disulfide and tungsten disulfide are also vying for the position.

Another disadvantage of Graphene is that there is no bandgap, which means the semiconductor can’t be switched off. The possibly jagged edges of the material could also pierce the cell membranes which may disrupt functions.

Other applications

Thanks to its 2D properties Graphene is also being studied for its potential uses in other areas. In relation to semiconductors there has been research from Korea on the uses of graphene as a filtration device for semiconductor wastewater. The oxide-based nanofiltration membranes could remove ammonium from the wastewater created by semiconductor production so it can then be recycled. As a wider application of this Graphene could be used as a filtration device for water or to remove gas from a gas-liquid mixture.

Graphene is also being researched for its uses in the biomedical field, which include being a platform for drug deliverybone tissue engineering, and ultrasensitive biosensors to detect nucleic acids. Graphene has other sensor-based uses, because the sensors can be made in micrometre-size they could be made to detect events on a molecular level, and could be of use in agriculture and smart farming.

There is a possibility Graphene could be combined with paint to weather-proof or rust-proof vehicles and houses, and to coat sports equipment. It also could have potential within the energy field for extending the lifespan of lithium-ion batteries.

When can we expect change?

Consultation company McKinsey estimated there would be three phases to the implementation of Graphene, none of which have begun just yet. Phase one would be to use Graphene as an ‘enhancer’ of existing technology, and will simply improve other devices by extending the lifespan or improving the conduction. This phase is estimated to last for ten years, after which phase two will begin. In this step graphene will become a replacement for silicon and will be the next step in the improvement of semiconductors and electronics. After 25 years we can expect the next step in graphene applications, things we can only dream of now.

In the meantime, people will still be using silicon-based semiconductors for quite a while. If you’re on the lookout for chips, or any other day-to-day or obsolete electronic components, contact Cyclops today at sales@cyclops-electronics.com, or use the rapid enquiry form on our website.

Categories
Component Shortage Electronic Components Supply Chain Technology

The global electronic component shortage – what happened?

Arguably the biggest ongoing crisis in the tech industry is the global semiconductor shortage. You can’t go far online without seeing news about it, and many people have seen it firsthand when trying to buy a brand-new car, or a recently released games console.

When did it start?

The obvious factor contributing to the shortage is COVID-19. The virus infected millions and sent the world into lockdown, which then led to the housebound masses logging in and going online.

At the start of lockdown in March 2020, 60% of 18-24-year-olds were increasing their use of home delivery instead of leaving the house. Amazon’s revenue also rose at a quicker pace than in previous years, with the company making $88.91 billion in Q2 2022.

Alongside the increase in online shopping came an increase in other digital activities like PC and console gaming. In the last quarter of 2020 desktop, notebook and workstation sales rose to a record 90.3 million units. Tech company Sony saw 25% of its revenue come from game and network services, and around 18% from electronics products and solutions.

In another case of bad timing, both Microsoft and Sony were about to release their next generation of game consoles, and Nintendo Switch sales were booming. All of this meant demand for components was skyrocketing.

This then led to delays in car manufacturing. Why? Because all the available chips were being bought up by computer and electronics manufacturers, so there were none left for the automotive industry. A car part may need between 500 and 1,500 chips, and are used for many parts including the dashboard display and to control the airbag.

There were other elements that contributed to the shortage before this: The US and China had been imposing increasingly high tariffs on each other for the past two years, and natural disasters and fires took out several factories in Japan, Taiwan and China.

When will it end?

The comeback from the semiconductor shortage will not be quick. Some factories that were shut down by natural disasters are still repairing the damage and trying to reopen production. But as the demand is staying high, there will need to be new facilities created to cater for the increase in demand.

The time, expertise and money needed to start a new factory will be too much for smaller firms to manage, so then the hole in the market needs to be filled by larger corporations like Intel and Samsung. Both companies currently have plans to open new fabs in America, but it will be a while before they can start production.

Intel’s ambitious plan to construct the one of the largest chip factories ever in Ohio would alleviate demand, but is not due to start production until 2025. Similarly, Samsung’s Texas fab will not be operational until 2024.

Despite smaller factories opening, the substantial backlog will not be solved by these alone. There will need to be a combination of an increase in production, time efficiency and, with the pandemic in mind, automation to decrease person-to-person contact. There will also need to be a stock of chips manufactured to avoid shortages in future.

Europe and America have both put an emphasis on increasing their domestic chip production in the next decade, in the hopes that this will prevent importing issues in the future.

The speed at which technology is currently being developed also puts manufacturers in a tight spot. Not only are more electronic devices being produced all the time, but the technology of the components within them is also advancing quickly.

While it is difficult to forecast entirely, experts say the shortage could last a few more years. Hopefully with the opening of the larger plants estimated for approximately the same time, the chip shortage might be mitigated by 2025.

We can help

The market is currently just as competitive in the case of other electronic components, but Cyclops can help. With our extensive stock of day-to-day and obsolete components we can supply you when others cannot.

For all your component needs, contact Cyclops Electronics today at sales@cyclops-electronics.com. Or submit a rapid enquiry through our website.

Categories
Component Shortage Electronic Components Future Supply Chain Technology

The European Chips Act and its impact on electronic component sales

Semiconductors are vital for our day-to-day life. They are in all the electronics you own but are also in your kitchen appliances, your car, your electric shower and many more. But what if we lost access to these components?

The huge reliance on imported semiconductors was made abundantly clear last year. Europe’s current share of the global semiconductor market is only about 10%, and the continents is otherwise dependent on supply from abroad.

The need for independence and autonomy in the European chip market has been made very apparent due to factors like Brexit and COVID-19.

The European Chips Act was first mentioned in the EU’s 2021 State of Union Letter of Intent, calling the act a key initiative for 2022. The EU created the Industrial Alliance for Processors and Semiconductor Technologies alongside it, to plan and oversee progress on the act.

One of the aims of the alliance is to increase Europe’s share in global chip production to 20% by 2030, but they will first have to identify issues with the market and map out a way to improve design and production.

During the ‘State of the World’ Special Address by European Commission president Ursula von der Leyen on January 20, the chips act was mentioned once again, and they announced draft legislation for the chips act is due in February of this year.

The European Commission president said that there would be five steps taken to improve the chip sector, and that they would focus on research first, then design and manufacturing. After these there would be an adaptation of state aid rules to increase provisions in case of shortage.  Lastly, she said the EU would work to support smaller, innovative technology companies.

In 2020 the United States accounted for the largest share in the semiconductor industry, with 47%. Following the US was South Korea with 20% of the market. China’s share has also increased quickly in recent years, putting it narrowly behind Korea. Despite Japan previously having a larger share in the market, they are currently on equal footing with Europe with a share of around 10%.

Despite no longer being a member of the EU, and therefore not directly signing the Chips Act, the UK could also have the potential to increase its standing in the global semiconductor race.

According to some UK-based chipmakers, the country has an advantage in the area of research and development. If research facilities like the University of Manchester were given the right attention and funding, they could develop sustainable resources like graphene to replace mined silicon in processors.

The UK electronics sector will always be considerably smaller than huge countries like China and America, but with significant investment they would have the ability to make a difference in the current chip shortage. And Cyclops is a perfect example of a smaller company making a big difference.

Cyclops is an electronic component distributor with a wealth of contacts from all over the world. With unrivalled stock and suppliers, Cyclops will put you ahead of your competitors. Contact us today at sales@cyclops-electronics.com.

Categories
Electronic Components Technology

Obsolete components and where to find them?

Obsolete electronic components are, despite the name, still widely used and required for manufactured products. The term obsolete often denotes something out of date or out of use. While these electronic components are classed as out of date, they are still used long after their so-called expiry date.

As companies try to keep up to date with the latest technological advancements and customer needs, many original equipment manufacturers (OEMs) will stop producing their older components and move on to manufacture the newest, high-profit electronics.

These older, no longer produced components will soon become obsolete and will be classed as end of life by their OEM, who will release a formal product change notice (PCN) for its customers.

But obsolescence does not stop companies from using a component. There will already be many products that use the component and will still require it. The demand will continue but the stock will shrink, causing the price of these end-of-life components to increase and drive competition to acquire them.

There are a few ways to bypass the need for obsolete components, but it will always be a case of balancing the cost to the benefits.

One option is a drop-in replacement, which is designed to be compatible with an existing product. This, however, can be time-consuming or costly, or both, depending on how many components need to be sourced.

There may also be the option for crossing, or cross-referencing, the obsolete electronic component. A different manufacturer may produce a component very similar to one no longer produced, or there could be an alternative part number which results in a usable substitute. There is always the risk that there is no viable substitute, though, or the alternatives are also obsolete.

Despite the high price for obsolete components, it’s likely that it would still be cheaper for companies to source these discontinued parts than to re-design their whole product around a new component. As such, people looking for obsolete components are often competing with many others and need to find reliable, trustworthy sources of stock.

Among the many companies offering to source obsolete components, there will be some that are untrustworthy. Buyers risk exposing themselves to faulty, counterfeit or overpriced products if they are unable to find a reliable, certified re-seller.

A Cyclops Excess speciality is buying obsolete components from suppliers who have ended up with slightly more than they needed. As a result, our Excess stock includes a huge variety of hard-to-find obsolete electronic components that are still sought after today.

All of Cyclops’s stock is quality checked and as an independent stockist we can buy and sell components according to our customer’s needs. If you’re on the look-out for regular or obsolete electronic components get in touch today at sales@cyclops-electronics.com, or use the rapid enquiry form available on our website here.

Categories
Component Shortage Electronic Components Future Supply Chain Technology

Latest electronic component factory openings

We’ve all heard about the shortages in standard components like semiconductors and chips. Cars, phones and computers, items we use every day, are no longer being produced at the speedy rate we’ve come to expect. The cause of this shortage is, in part, due to the COVID-19 pandemic.

This is especially noticeable in Europe and America, where production has often been outsourced to Asia in the past.

So who are the latest companies expanding operations, and how much are they spending? Check out our quick run-down of factories and when they should open:

Company: Intel

Location: Ohio, USA

Product: Chips

Completion date: 2025

Cost: $20 billion (£14.7 billion)

The latest, and possibly greatest, announcement on our list comes from Intel. The corporation revealed in January that they would be committing to building two chip manufacturing plants in New Albany, Ohio. The move is said to be due to supply chain issues with Intel’s manufacturers in Asia, and should boost the American industry with the creation of at least 3,000 jobs. Construction should begin this year.

Company: Samsung Electronics

Location: Texas, USA

Product: Semiconductors

Completion date: 2024

Cost: $17billion (£12.5billion)

The household name announced late last year that they would begin work on a new semiconductor-manufacturing plant in Taylor, Texas. The Korean company stated the project was Samsung’s largest single investment in America, and is due to be operational by the middle of 2024.

Company: Infineon

Location: Villach, Austria

Product: Chips

Completion date: 2021

Cost: 1.6 billion (£1.3 billion)

After being in construction since 2018, Infineon’s Austrian plant became operational in September last year. The chip factory for power electronics, also called energy-saving chips, on 300-millimeter tin wafers began shipping three months ahead of schedule in 2021, and its main customer base will be in the automotive industry.

Company: Northvolt

Location: Gdańsk, Poland

Product: Batteries

Completion date: 2022

Cost: $200 million (£148 million)

The Swedish battery manufacturer is expanding its operations with a new factory in Poland. While initial operations are supposed to begin this year producing 5 GWh of batteries, it hopes to further develop to produce 12 GWh in future. Northvolt has also just begun operations at its new battery factory in Skellefteå in Sweden.

Company: Vingroup

Location: Hà Tĩnh, Vietnam

Product: Batteries

Completion date: 2022

Cost: $174 million (£128 million)

The Vietnamese electric vehicle manufacturer is due to start production at its new factory later this year, where it will produce lithium batteries for its electric cars and buses. The factory will be designed to produce 10,000 battery packs per year initially, but in a second phase the manufacturer said it will upgrade to 1 million battery packs annually. VinFast, a member of Vingroup, is also planning on expanding operations to America and Germany.

Company: EMD Electronics

Location: Arizona, USA

Product: Gas and chemical delivery systems

Completion date: 2022

Cost: $28 million (£20.7 million)

The member of the multinational Merck Group is expanding operations with the construction of a new factory in Phoenix, Arizona, to manufacture equipment for its Delivery Systems & Services business. The factory is due to be operational by the end of the year, and will produce GASGUARD and CHEMGUARD systems for the company.

A bright future

These electronic component factory openings signal a great increase in business, and will aide in the easing of the component crisis. But it will take a while for these fabs to be operational.

Can’t wait? Cyclops is there for all your electronic component needs. We have 30 years of expertise, and can help you where other suppliers cannot. Whether it’s day-to-day or obsolete electronic components, contact us today at sales@cyclops-electronics.com, or use the rapid enquiry form on our website.

Categories
Component Shortage Electronic Components Future Supply Chain Technology

Electronic component market to see continued growth by 2027

The electronic component market is set to see continued growth over the next five years, with projections estimating greater demand than ever.

Several forecasts have converged with the same conclusion; demand for components is set to rocket as the world adopts more advanced technologies. 

This article will explore the latest research papers and market analysis from reputable sources. We will also explore why the demand for electronic components is set to soar and the supply chain’s challenges. 

Global components market 

The market analysis covered by Market Watch predicts that the global electronic components market will reach USD 600.31 billion by 2027, from USD 400.51 billion in 2020, a compound annual growth rate of 4.7% from 2021. 

Active components market 

Another market report, this time looking at active electronic components, predicts the active electronic components market will reach USD 519 billion by 2027 (£380bn pounds, converted 12/01/22), a CAGR of 4.82% from 2021. 

Passive and interconnecting components market 

According to 360 Research Reports, the passive and interconnecting electronic components market is projected to reach USD 35.89 billion in 2027, up from USD 28.79 billion in 2020, a compound annual growth rate of 3.2% from 2021. 

Semiconductor wafer market 

According to Research and Markets, the global semiconductor wafer market is predicted to reach USD 22.03 billion by 2027, rising at a market growth of 4.6% CAGR during the forecast period starting from 2021. 

Dynamic Random Access Memory (DRAM) market

Market Reports World predicts the global DRAM market will see extreme growth, growing at a CAGR of 9.86% between 2021 and 2027. The market was valued at USD 636.53 million in 2021 and will grow to nearly USD 700 million by 2027.  

Why is component demand set to increase so much?

The world is undergoing an extreme technological transformation that began with the first computers. Today, electronics are everywhere, and they are becoming ever more intricate and complex, requiring more and more components. 

Several technologies are converging, including semi-autonomous and electric vehicles, automation and robotics, 5G and internet upgrades, consumer electronics, and smart home appliances like EV chargers and hubs. 

This is a global transformation, from your house to the edge of the earth. Electronic components are seeing unprecedented demand because smarter, more capable devices are required to power the future. 

What challenges does the supply chain face? 

The two biggest challenges are shortages and obsolescence. 

Shortages are already impacting supply chains, with shortages of semiconductors, memory, actives, passives, and interconnecting components. We are a global electronic component distributor specialising in hard to find and obsolete electronic components. Email your enquiries to us today at Sales@cyclops-electronics.com. Our specialised team is here to help.

As demand increases, supply will struggle to keep up. It will be the job of electronic components suppliers like Cyclops and electronic component manufacturers to keep supply chains moving while demanding increases. 

Obsolescence refers to electronic components becoming obsolete. While some electronic components have lifespans of decades, others are replaced within a few years, which puts pressure on the supply chain from top to bottom. 

In any case, the future is exciting, and the electronic components market will tick along as it always does. We’ll be here to keep oiling the machine.

Categories
Component Shortage Electronic Components Supply Chain Technology

How Can Companies Combat the Electronic Components Shortage?

Electronic components shortages show no signs of abating, fuelled by growing demand for electronics, limited availability of raw materials, soaring manufacturing prices and lingering COVID-19 disruptions.

Shortages have hindered manufacturers since 2018, but things came to a head in 2020 with the COVID-19 pandemic disrupting supply chains.

The pandemic created an imbalance in supply chains, with demand for many components, from chips to actives and passives, outstripping supply. The question is, how can companies combat the electronic components shortage?

Partner with a distributor 

Electronic component distributors occupy a unique position in the supply chain, representing the manufacturer and customer. Distributors work for both parties to move components up and down the supply chain.

The benefit of working with a distributor is that your company will be in the mix for components not available through traditional channels.

For example, we specialise in the procurement and delivery of electronic components and parts for a wide variety of industries from the world’s leading manufacturers. We can help you beat allocation challenges and long lead times.

Diversify suppliers

Diversity is the key to strengthening your supply chain. You need multiple sources for electronic components. It’s a good idea to have retail and distribution channels, so you have several routes should one supplier channel fail.

Diversity can also be found in geography. A supplier in your home country is essential, but so are suppliers close to the manufacturing source.  

Expand storage capabilities 

If your company can expand its storage capabilities for essential components, this is the simplest way to combat shortages. By storing large quantities of components, you create a supply separate from the chain.

The risk with expanding storage is procuring more components than you need, resulting in oversupply problems that incur heavy losses.  

Source equivalent components  

When components are unavailable, you can specify equivalents that meet your performance and financial specifications. Equivalent components perform the same job as your original components, but another company makes them.

A simple example is Samsung, which uses its own Exynos chip or a QUALCOMM chip in the same smartphone model depending on where the smartphone is sold.

Visibility and proactive planning 

Supply chains are complex beasts that require visibility to manage. Monthly stock updates are no longer sufficient; to combat shortages, you need real-time supplier updates and an inventory catalogue to keep track of supply.

You can proactively plan component shipments and tap into price dips and new inventory when you have visibility over total supply.

Predict obsolescence

When electronic components become obsolete, manufacturers who haven’t planned for it scramble to find components that will work. This inevitably creates bottlenecks in the supply chain as many big companies compete for orders.

Obsolescence is predictable because all electronic components have a run date, and manufacturers update lifespans with inventory cataloguing. You can avoid shortages and soaring prices for rare parts by predicting obsolescence.  

Have shortages? Speak to us

We’re here to help you deal with electronic component shortages. Contact us here.