Categories
Uncategorized

Facebook is going to put smart glasses on your face in 2021

You may recall that several years ago (back in 2013 to be exact), Google brought out Google Glass. This was a brand of smart glasses that used touch and voice commands to interact with online content, display directions and act as a phone. The product wasn’t a massive success, but it did kickstart a consumer-focused AR arm’s race.

When we talk about AR or augmented reality, with regards to glasses. We mean eyewear with technology that merges what you see in the real-world with an overlay of virtual information from the internet. Examples include directions to a supermarket when you walk and restaurant reviews when you look at a sign.

The AR market is predicted to be worth $100 billion by 2024 and the technology is advancing at a rapid rate. Facebook is the latest juggernaut to enter the fold, and they have plans to put smart glasses on your face by 2021.

Facebook’s move into AR

Facebook owns Oculus, the company behind some of the world’s most popular VR (virtual reality) headsets. AR goes beyond VR by adding digital elements to real life, as opposed to simulating a new environment entirely.

Oculus practically has the VR market sewn up already, so it hasn’t come as a surprise to us that CEO Mark Zuckerberg has recently revealed Project Aria, Facebook’s augmented reality research project that will deliver a product by 2021.

Announced during the fittingly remote Facebook Connect event, Zuckerberg said the goal is to “develop some normal-size, nice-looking glasses that you can wear all day, and interact with holograms, digital objects and information while still being present with the people and the world around you.”

It all sounds exciting, and though we have been here before with Google Glass, Facebook has a track record with VR. They could do the same with AR, and Project Aria is the research project that will deliver the technology needed.

The technology driving AR

To create an AR environment, you need sound, video, graphics, networking, and GPS data. AR requires good hardware and software. If Facebook intends to create “normal-size, nice-looking glasses”, the technology will also have to be refined.

Zuckerberg admits “there’s still a lot of work to be done on the foundational technologies,” but adds that “Project Aria is the first research device we’re putting out into the world to help us understand the hardware and software needed.”

To deliver the end product, Facebook has partnered with luxury eyewear giant Luxottica. It is expected that Facebook’s smart glasses will have Ray-Ban branding. This will help the glasses accommodate a wider range of styles.           

Specifications for the 2021 glasses have not been revealed. However, they are expected to be capable of overlaying directions, music recommendations, localised information (such as what’s around the corner), and integrate with some of Facebook’s features. It’s important to note, however, that nothing is certain.

Also, Facebook is working on its own 100% in-house AR eyewear, which it intends to thoroughly test before bringing any product to market. The tech giant has a reputation to uphold with eyewear (they own Oculus), and if their VR headsets are anything to go by, we are in for a treat when Facebook’s AR glasses finally land.

Categories
Uncategorized

Cyclops Group Brexit statement (IV) issued October 2020

Operational update

Cyclops group has robust plans in place for a variety of Brexit outcomes. Strategic Brexit planning has evolved over the last 2 years to incorporate the likelihood of several possible outcomes as well as a fully negotiated agreement. For this reason, the Business has been required to undertake a particularly extensive analysis of risk and therefore predicts no change to the essential service provided by Cyclops.

In the event of a no-deal exit, the UK Government has detailed that “The trade you carry out with the EU will broadly follow the customs controls that apply for the rest of the world.” As a business that has traded internationally for many years, we have a wide variety of country-specific trade processes in utilisation.

The most important element for undisrupted trade is the adoption and utilisation of a UK Economic Operator Registration and Identification number (EORI). This has been held by the Business for a number of years.

We have been working closely with our freight partners to ensure that they have sufficient plans in place to minimise any border disruption. We are entirely satisfied that all sensible precautions have been taken such as the recruitment of extra staff at the border. Furthermore, the Business operates from several worldwide locations and has a variety of re-deployment options available to it.

The Business continues to make adaptations as further information becomes available. The prioritization of our customer service delivery is firmly entrenched in our Business model and we seek to reassure our customers of our proactive approach.

Should you wish to discuss this further, please do not hesitate to make contact me.

David Yodaiken

Commercial Director

Davidy@cyclops-electronics.com

Categories
Uncategorized

What the future holds for passive and interconnecting electronic components

While the world economy is in freefall with the COVID-19 pandemic, with mass unemployment and trade plummeting, the global passive and interconnecting electronic components market is expected to continue growing thanks to demand from the developing world and the rise of 5G infrastructure.

Grand View Research has released forecasts for the passive and interconnecting electronic components market, predicting a compound annual growth rate of 5.3% from 2020 to 2027 with a slowdown from 2020 to 2021 due to COVID-19.

The future is by no means certain and we do not know exactly how badly the world economy will be impacted by the coronavirus outbreak. We do however have models that tell us demand will increase for electronics over time. This spells good news for components manufacturers and the wider electronics industry.

Changes in market demand

As the world economy is adversely impacted by the coronavirus outbreak, demand for electronic components in many verticals will slow. This can be traced back to the reality that in times of uncertainty, consumers are warier of spending money. Less demand for products means a slowdown in production and demand.

However, regardless of the world economy, some regions do have a stimulus. The United Kingdom, Japan, China, South Korea, and the US are rolling out 5G network infrastructure and this will stimulate the electronics market. Smartphones, tablets, drones, and other devices that rely on networking will be key beneficiaries.

So, it isn’t by any means doom and gloom for the global passive and interconnecting electronic components market. Growth is predicted from 2020 to 2027 and the COVID-19 outbreak will only slow down this growth temporarily.

How component sourcing has changed

In response to a fall in demand for products, passive and interconnecting electronic component production has slowed. In addition, a lot of stock hasn’t been used and is sitting in storage until such a time it is needed.

Prior to COVID-19, it was easy to think of component production as being in a state of perpetual motion for it was always present. Demand has fallen but that doesn’t mean it has ceased. Passive and interconnecting electronic components are still being sourced, albeit in smaller batches and more carefully than ever.

Another behavior we have witnessed is component hoarding. OEMs are unsure of their partner’s manufacturing capabilities in the face of COVID-19. So, they are hoarding components to ensure they can scale up demand when the time is right. This is considered normal behavior without a global pandemic, but we are seeing more extreme examples as a means to protect manufacturing output. Ultimately, this means there are fewer components to go around, which drives up the cost of certain components.

How we can help you with sourcing

The future may be uncertain but good preparation will help you through it. As your electronic component distribution partner, we can source components for you with access to all major manufacturers. We can source legacy, obsolete, state-of-the-art, and short production run components at prices that suit your margin. Visit our website or click here to use access to our component search and enquire with us. We are here to help you with your electronic component needs.

Categories
Uncategorized

Cyclops September COVID-19 Lead time Update

As we enter another global spike in COVID-19 more uncertainty rises in its impact it could have on electronic global supply chains and manufacturers.   

Manufacture Altera has had an increase in lead times to 15-16 weeks this is due to the demand from the server market. Analog devices have reported their lead times are more than 20 weeks on some parts, this is due to low capacity of ASP materials for medical parts.

Linear Technology have reported they are extending their LTM lead times to 20-24 weeks, while their LT series lead times currently stand at 16-20. LT1 and LTC1 are also unstable. Consequently, the company reported that parts used in medical equipment are experiencing unstable lead times, like Analog this is likely due to the impact of Covid-19 and the demand for medical supplies. NXP factories are experiencing wafer shortages and lack of production capacity. Their MPX/Sensor series has spiked to 26 weeks, the market price has risen by 20% this is a result in the sensors being used in medical treatments.

Maxim Integrated has announced due to the recent lockdown of Maxims Philippines factory has caused delays and lead times are remining at 14-16 with backlog unable to be pulled in. Similarly, company Microchip lead times are stretching to 16-20 weeks this is due to the limited factory capacity due to COVID-19. OMRON Micro switches are experiencing stretched lead times and increase in pricing particularly effecting the D2FC series. Lead times are now around 14-20 weeks. ROHM plants in Philippines are currently working at 50% due to COVID-19 quarantine.

AVX tantalum caps and F series parts are expecting shortage, the lead times have increased to a staggering 30-40 weeks, this has led to AVX not accepting lead time-based orders.

Need quicker lead times?

We are experiencing an increase in lead times due to COVID-19 as seen above manufactures are struggling to produce the mass quantity due to lock downs and shortage of staff.

We at cyclops electronics are here to provide those hard to find components in these challenging times. To search for your components please click here. Or email sales@cyclops-electronics.com for enquires.

Categories
Technology

5G Technology and drones – The future taking flight

The last decade has seen the commercial market for drones explode. The global drone market was estimated by PWC in 2016 to be worth just under £100 billion ($127bn) and that was 4 years ago before the emergence of 5G technology.

Rapid advancements in the propulsion, navigation, sensory and battery systems that power drones have brought about the likes of drone delivery services, aerial photography, and a new way to conduct mountain search and rescue operations.

These varied examples of drone applications perfectly illustrates the real usefulness of drones. Key to their adoption has been lithium-ion batteries that charge rapidly and better navigation systems that enable pinpoint control.

However, as drones have been increasingly adopted, our data transfer needs have increased and 4G technology has been shown up to be less than ideal.  

The need for 5G

5G can theoretically reach speeds of 10 gigabits per second and it is expected to reliably offer 1 Gbit/s to 2 Gbit/s in a few years.

This is much faster than 4G. For drones, it means faster data transfer and data collection, enabling real-time analysis and access to big data files quickly.

However, while much has been made about the increased speed of 5G over 4G (it is up to 100 times faster than 4G) the real value for drones is the lower latency.

Latency is the lag that occurs when resources are requested over a network. For example, you might wish to check wind speed when flying, but when you request the data, it takes a few seconds to load. This delay is caused by latency across the network.

Latency for 4G is around 30 milliseconds, whereas with 5G it’s below 5 milliseconds. In a best case scenario, the latency can be 1 millisecond.

This latency improvement is massive for drones. It makes reliable live view and live streaming possible. Real-time footage becomes a reality. Load times become imperceptible and responsiveness increases between devices.

Another area where 5G benefits drones is the 5G New Radio interface, which enables a higher number of devices to be used in one area over a wave spectrum. This means more devices can be controlled to reduce congestion.

Meeting demand for 5G component sourcing

5G is an exciting technology but it is still in its infancy, and up until now drone architecture has been designed around 4G.

5G requires different components to handle the speed increase and demands placed over the network. Drones need a new architecture to transfer data in milliseconds and transmit high-definition footage in real-time.

In short, the current technology has to evolve.

Sourcing components like ESCs, flight controllers, GPS modules, receivers, antennas and batteries for 5G drones will become more challenging as more players in the market start to evolve their products to meet demand.

Day-to-day component sourcing will require good contacts in the industry just as it always has. But the race to 5G will accelerate demand and increase competition. This is where the value of an electronic components distributor like us comes in.

We can supply active, passive and electro-mechanical components, including 5G components, working directly for you to procure the best components at the lowest prices. If the future is 5G, we’ll help you meet it.